Logit models and logistic regressions for social networks: III. Valued relations

被引:118
作者
Robins, G [1 ]
Pattison, P
Wasserman, S
机构
[1] Deakin Univ, Sch Psychol, Fac Hlth & Behav Sci, Geelong, Vic 3217, Australia
[2] Univ Melbourne, Parkville, Vic 3052, Australia
[3] Univ Illinois, Chicago, IL 60680 USA
基金
美国国家科学基金会; 美国国家卫生研究院; 澳大利亚研究理事会;
关键词
social networks; p(*) models; autologistic models; pseudo-likelihood estimation;
D O I
10.1007/BF02294302
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper generalizes the p* model for dichotomous social network data (Wasserman & Pattison, 1996) to the polytomous case. The generalization is achieved by transforming valued social networks into three-way binary arrays. This data transformation requires a modification of the Hammersley-Clifford theorem that underpins the p* class of models. We demonstrate that, provided that certain (non-observed) data patterns are excluded from consideration, a suitable version of the theorem can be developed. We also show that the approach amounts to a model for multiple logits derived from a pseudo-likelihood function. Estimation within this model is analogous to the separate fitting of multinomial baseline logits, except that the Hammersley-Clifford theorem requires the equating of certain parameters across logits. The paper describes how to convert a valued network into a data array suitable for fitting the model and provides some illustrative empirical examples.
引用
收藏
页码:371 / 394
页数:24
相关论文
共 40 条
[1]  
Agresti A., 1990, CATEGORICAL DATA ANA
[2]   LOG-MULTIPLICATIVE MODELS FOR VALUED SOCIAL-RELATIONS [J].
ANDERSON, CJ ;
WASSERMAN, S .
SOCIOLOGICAL METHODS & RESEARCH, 1995, 24 (01) :96-127
[3]  
ANDERSON CJ, IN PRESS SOCIAL NETW
[4]  
[Anonymous], SOCIOLOGICAL METHODO
[5]   Generalized exchange [J].
Bearman, P .
AMERICAN JOURNAL OF SOCIOLOGY, 1997, 102 (05) :1383-1415
[6]   CALCULATION OF POLYCHOTOMOUS LOGISTIC-REGRESSION PARAMETERS USING INDIVIDUALIZED REGRESSIONS [J].
BEGG, CB ;
GRAY, R .
BIOMETRIKA, 1984, 71 (01) :11-18
[7]   STATISTICAL-ANALYSIS OF NON-LATTICE DATA [J].
BESAG, J .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES D-THE STATISTICIAN, 1975, 24 (03) :179-195
[8]  
BESAG J, 1974, J ROY STAT SOC B MET, V36, P192
[9]  
BESAG J, 1989, BIOMETRIKA, V76, P633
[10]   EFFICIENCY OF PSEUDO-LIKELIHOOD ESTIMATION FOR SIMPLE GAUSSIAN FIELDS [J].
BESAG, J .
BIOMETRIKA, 1977, 64 (03) :616-618