Survival kinases in ischemic preconditioning and postconditioning

被引:409
作者
Hausenloy, Derek J.
Yellon, Derek M.
机构
[1] UCL Hosp, Hatter Inst, London WC1E 6DB, England
[2] UCL Hosp, Ctr Cardiol, London WC1E 6DB, England
关键词
signalling; preconditioning; kinases;
D O I
10.1016/j.cardiores.2006.01.017
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Despite nearly twenty years of research into the field of ischemic preconditioning, the actual mechanism of protection remains unclear. However, much progress has been made in elucidating the signal transduction pathways that convey the extracellular signal initiated by the preconditioning stimulus to the intracellular targets of cardioprotection, with many of these pathways involving the activation of a diverse array of survival protein kinase cascades. The powerful protective benefits of ischemic preconditioning have not yet been realised in the clinical arena, not least because of the prerequisite for any preconditioning intervention to be applied prior to the onset of index ischemia, which in the case of an acute myocardial infarction is difficult to institute. In this regard, the newly described phenomenon of ischemic postconditioning, which comprises a cardioprotective intervention that can be applied at the time of myocardial reperfusion, offers a far more attractive and amenable approach to myocardial protection. Interestingly, certain survival protein kinase cascades recruited at the time of myocardial reperfusion appear to be shared by both ischemic preconditioning and postconditioning, thereby offering a potentially common target of cardioprotection. The often disputed roles these different protein kinases play in mediating the cardioprotective effects of ischemic preconditioning and postconditioning are reviewed in this article, and include protein kinases C, G, and A, members of the MAPK family (Erk1/2, p38, INK and BMK1), the PI3K-Akt cascade, and the JAK-STAT pathway. (c) 2006 European Society of Cardiology. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:240 / 253
页数:14
相关论文
共 117 条
[1]   Postconditioning inhibits mitochondrial permeability transition [J].
Argaud, L ;
Gateau-Roesch, O ;
Raisky, O ;
Loufouat, J ;
Robert, D ;
Ovize, M .
CIRCULATION, 2005, 111 (02) :194-197
[2]   PRECONDITIONING OF ISOLATED RABBIT CARDIOMYOCYTES - INDUCTION BY METABOLIC STRESS AND BLOCKADE BY THE ADENOSINE ANTAGONIST SPT AND CALPHOSTIN-C, A PROTEIN-KINASE-C INHIBITOR [J].
ARMSTRONG, S ;
DOWNEY, JM ;
GANOTE, CE .
CARDIOVASCULAR RESEARCH, 1994, 28 (01) :72-77
[3]   Protein kinase activation and myocardial ischemia/reperfusion injury [J].
Armstrong, SC .
CARDIOVASCULAR RESEARCH, 2004, 61 (03) :427-436
[4]   Phosphorylation state of hsp27 and p38 MAPK during preconditioning and protein phosphatase inhibitor protection of rabbit cardiomyocytes [J].
Armstrong, SC ;
Delacey, M ;
Ganote, CE .
JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY, 1999, 31 (03) :555-567
[5]   Mitochondrial PKCε and MAPK form signaling modules in the murine heart -: Enhanced mitochondrial PKCε-MAPK interactions and differential MAPK activation in PKCε-induced cardioprotection [J].
Baines, CP ;
Zhang, J ;
Wang, GW ;
Zheng, YT ;
Xiu, JX ;
Cardwell, EM ;
Bolli, R ;
Ping, P .
CIRCULATION RESEARCH, 2002, 90 (04) :390-397
[6]   Protein kinase Cε interacts with and inhibits the permeability transition pore in cardiac mitochondria [J].
Baines, CP ;
Song, CX ;
Zheng, YT ;
Wang, GW ;
Zhang, J ;
Wang, OL ;
Guo, Y ;
Bolli, R ;
Cardwell, EM ;
Ping, PP .
CIRCULATION RESEARCH, 2003, 92 (08) :873-880
[7]   Oxygen radicals released during ischemic preconditioning contribute to cardioprotection in the rabbit myocardium [J].
Baines, CP ;
Goto, M ;
Downey, JM .
JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY, 1997, 29 (01) :207-216
[8]   INVOLVEMENT OF PROTEIN-KINASE-C IN THE DELAYED CYTOPROTECTION FOLLOWING SUBLETHAL ISCHEMIA IN RABBIT MYOCARDIUM [J].
BAXTER, GF ;
GOMA, FM ;
YELLON, DM .
BRITISH JOURNAL OF PHARMACOLOGY, 1995, 115 (02) :222-224
[9]   Role of the JAK-STAT pathway in protection against myocardial ischemia/reperfusion injury [J].
Bolli, R ;
Dawn, B ;
Xuan, YT .
TRENDS IN CARDIOVASCULAR MEDICINE, 2003, 13 (02) :72-79
[10]   PI3-kinase regulates the mitochondrial transition pore in controlled reperfusion and postconditioning [J].
Bopassa, JC ;
Ferrera, R ;
Gateau-Roesch, O ;
Couture-Lepetit, E ;
Ovize, M .
CARDIOVASCULAR RESEARCH, 2006, 69 (01) :178-185