Real-time multi-channel stimulus artifact suppression by local curve fitting

被引:178
作者
Wagenaar, DA [1 ]
Potter, SM
机构
[1] CALTECH, Dept Phys, Pasadena, CA 91125 USA
[2] Georgia Inst Technol, Dept Biomed Engn, Atlanta, GA 30332 USA
[3] Emory Univ, Atlanta, GA 30332 USA
关键词
artifact suppression; micro-electrode array; stimulation; real-time; local regression; multi-electrode array; MEA; spikes;
D O I
10.1016/S0165-0270(02)00149-8
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
We describe an algorithm for suppression of stimulation artifacts in extracellular micro-electrode array (MEA) recordings. A model of the artifact based on locally fitted cubic polynomials is subtracted from the recording, yielding a flat baseline amenable to spike detection by voltage thresholding. The algorithm, SALPA, reduces the period after stimulation during which action potentials cannot be detected by an order of magnitude, to less than 2 ins. Our implementation is fast enough to process 60-channel data sampled at 25 kHz in real-time on an inexpensive desktop PC. It performs well on a wide range of artifact shapes without re-tuning any parameters, because it accounts for amplifier saturation explicitly and uses a statistic to verify successful artifact suppression immediately after the amplifiers become operational. We demonstrate the algorithm's effectiveness on recordings from dense monolayer cultures of cortical neurons obtained from rat embryos. SALPA opens up a previously inaccessible window for studying transient neural oscillations and precisely timed dynamics in short-latency responses to electric stimulation. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:113 / 120
页数:8
相关论文
共 29 条
[1]   Single-unit neural recording with active microelectrode arrays [J].
Bai, Q ;
Wise, KD .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2001, 48 (08) :911-920
[2]   Multiple site silicon-based probes for chronic recordings in freely moving rats:: implantation, recording and histological verification [J].
Bragin, A ;
Hetke, J ;
Wilson, CL ;
Anderson, DJ ;
Engel, J ;
Buzsáki, G .
JOURNAL OF NEUROSCIENCE METHODS, 2000, 98 (01) :77-82
[3]   A multielectrode array for intrafascicular recording and stimulation in sciatic nerve of cats [J].
Branner, A ;
Normann, RA .
BRAIN RESEARCH BULLETIN, 2000, 51 (04) :293-306
[4]   Cortical area MT and the perception of stereoscopic depth [J].
DeAngelis, GC ;
Cumming, BG ;
Newsome, WT .
NATURE, 1998, 394 (6694) :677-680
[5]   The Neurally Controlled Animat: Biological brains acting with simulated bodies [J].
DeMarse, TB ;
Wagenaar, DA ;
Blau, AW ;
Potter, SM .
AUTONOMOUS ROBOTS, 2001, 11 (03) :305-310
[6]   Tetrodes markedly improve the reliability and yield of multiple single-unit isolation from multi-unit recordings in cat striate cortex [J].
Gray, CM ;
Maldonado, PE ;
Wilson, M ;
McNaughton, B .
JOURNAL OF NEUROSCIENCE METHODS, 1995, 63 (1-2) :43-54
[7]   SIMULTANEOUS SINGLE UNIT RECORDING INVITRO WITH A PHOTOETCHED LASER DEINSULATED GOLD MULTI-MICRO-ELECTRODE SURFACE [J].
GROSS, GW .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 1979, 26 (05) :273-279
[8]   STIMULATION OF MONOLAYER NETWORKS IN CULTURE THROUGH THIN-FILM INDIUM-TIN OXIDE RECORDING ELECTRODES [J].
GROSS, GW ;
RHOADES, BK ;
REUST, DL ;
SCHWALM, FU .
JOURNAL OF NEUROSCIENCE METHODS, 1993, 50 (02) :131-143
[9]   Multi-electrode stimulation and recording in the isolated retina [J].
Grumet, AE ;
Wyatt, JL ;
Rizzo, JF .
JOURNAL OF NEUROSCIENCE METHODS, 2000, 101 (01) :31-42
[10]  
Grumet AE, 1999, THESIS MIT