Effective dipolar boundary conditions for dynamic magnetization in thin magnetic stripes

被引:273
作者
Guslienko, KY [1 ]
Demokritov, SO
Hillebrands, B
Slavin, AN
机构
[1] Seagate Res, Pittsburgh, PA 15222 USA
[2] Univ Kaiserslautern, Fachbereich Phys, D-67653 Kaiserslautern, Germany
[3] Oakland Univ, Dept Phys, Rochester, MI 48309 USA
来源
PHYSICAL REVIEW B | 2002年 / 66卷 / 13期
关键词
D O I
10.1103/PhysRevB.66.132402
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We show that dynamic magnetization at the lateral edges of a thin, axially magnetized magnetic element with finite in-plane size can be described by effective "pinning" boundary conditions. This effective pinning is of a purely dipolar nature, is not related to the magnetocrystalline surface anisotropy of the magnetic material, and is determined by the inhomogeneity of the dynamic demagnetizing field near the edges of the element. Eigenfunctions and eigenvalues obtained using these effective boundary conditions give quantitative description of the quantized spin wave spectra experimentally observed in long and thin permalloy stripes of a micron-size width.
引用
收藏
页码:1 / 4
页数:4
相关论文
共 14 条
[1]   Minimum field strength in precessional magnetization reversal [J].
Back, CH ;
Allenspach, R ;
Weber, W ;
Parkin, SSP ;
Weller, D ;
Garwin, EL ;
Siegmann, HC .
SCIENCE, 1999, 285 (5429) :864-867
[2]   MAGNETOSTATIC MODE SPECTRUM OF RECTANGULAR FERROMAGNETIC PARTICLES [J].
BRYANT, PH ;
SMYTH, JF ;
SCHULTZ, S ;
FREDKIN, DR .
PHYSICAL REVIEW B, 1993, 47 (17) :11255-11262
[3]   MAGNETOSTATIC MODES OF A FERROMAGNET SLAB [J].
DAMON, RW ;
ESHBACH, JR .
JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 1961, 19 (3-4) :308-320
[4]  
Gurevich A. G., 1996, MAGNETIZATION OSCILL
[5]   Spin-wave excitations in cylindrical magnetic dot arrays with in-plane magnetization [J].
Guslienko, KY ;
Slavin, AN .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2000, 215 :576-578
[6]   Spin-waves in cylindrical magnetic dot arrays with in-plane magnetization [J].
Guslienko, KY ;
Slavin, AN .
JOURNAL OF APPLIED PHYSICS, 2000, 87 (09) :6337-6339
[7]  
HOCHSTADT H, 1989, INTEGRAL EQUATIONS
[8]  
Jackson J. D., 1975, CLASSICAL ELECTRODYN
[9]   Brillouin light scattering from quantized spin waves in micron-size magnetic wires [J].
Jorzick, J ;
Demokritov, SO ;
Mathieu, C ;
Hillebrands, B ;
Bartenlian, B ;
Chappert, C ;
Rousseaux, F ;
Slavin, AN .
PHYSICAL REVIEW B, 1999, 60 (22) :15194-15200
[10]   Spin wave wells in nonellipsoidal micrometer size magnetic elements [J].
Jorzick, J ;
Demokritov, SO ;
Hillebrands, B ;
Bailleul, M ;
Fermon, C ;
Guslienko, KY ;
Slavin, AN ;
Berkov, DV ;
Gorn, NL .
PHYSICAL REVIEW LETTERS, 2002, 88 (04) :4