Application of density functional theory and vibrational spectroscopy toward the rational design of ionic liquids

被引:244
作者
Katsyuba, Sergey A.
Zvereva, Elena E.
Vidis, Ana
Dyson, Paul J.
机构
[1] Russian Acad Sci, Kazan Sci Ctr, AE Arbuzov Organ & Phys Chem, Kazan 420088, Russia
[2] Ecole Polytech Fed Lausanne, Inst Sci & Ingn Chim, CH-1015 Lausanne, Switzerland
关键词
D O I
10.1021/jp064610i
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Density functional theory methods in combination with vibrational spectroscopy are used to investigate possible variants of molecular structure of the ion pairs of several imidazolium-based ionic liquids (ILs). Multiple stable structures are determined with the anion positioned (a) near to the C2 atom of the imidazolium ring, (b) between N1 and C5, (c) between N3 and C4, and (d) between C4 and C5. Chloride and bromide anions in vacuum also occupy positions above or below the imidazolium ring, but in the condensed state these positions are destabilised. In comparison with the halides that almost equally occupy the positions (a-d), tetrafluoroborate and hexafluorophosphate anions strongly prefer position (a). The position and the type of the anion influence the conformation of the side chains bound to the imidazolium N1 atom, which are able to adopt in vacuum all usual staggered or eclipsed conformations, although in the liquid state some of the conformations are present only as minor forms if at all. Vibrations of the cations depend both on the conformational changes and on the association with the anion. The formation of the ion pairs influences mainly stretching and out-of-plane vibrations of the imidazolium C-H groups and stretching vibrations of the perfluoroanions. Other modes of the ions retain their individuality and practically do not mix. This allows "interionic" vibrations to be separated and to regard the couple of the ions as an anharmonic oscillator. Such a model correlates the molecular structure of various ILs and their melting points without involving the energy of the interaction between the cations and anions but explains structure-melting point correlations on the grounds of quasy-elastic properties.
引用
收藏
页码:352 / 370
页数:19
相关论文
共 77 条
[1]   ROOM-TEMPERATURE IONIC LIQUIDS AS SOLVENTS FOR ELECTRONIC ABSORPTION-SPECTROSCOPY OF HALIDE-COMPLEXES [J].
APPLEBY, D ;
HUSSEY, CL ;
SEDDON, KR ;
TURP, JE .
NATURE, 1986, 323 (6089) :614-616
[2]   ELECTRONIC STABILIZATION OF NUCLEOPHILIC CARBENES [J].
ARDUENGO, AJ ;
DIAS, HVR ;
HARLOW, RL ;
KLINE, M .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1992, 114 (14) :5530-5534
[3]   Ionic liquids as matrixes for matrix-assisted laser desorption/ionization mass spectrometry [J].
Armstrong, DW ;
Zhang, LK ;
He, LF ;
Gross, ML .
ANALYTICAL CHEMISTRY, 2001, 73 (15) :3679-3686
[4]  
ASKADSKII AA, 1978, DOKL AKAD NAUK SSSR+, V238, P592
[5]   EVIDENCE FOR HYDROGEN-BONDING IN SOLUTIONS OF 1-ETHYL-3-METHYLIMIDAZOLIUM HALIDES, AND ITS IMPLICATIONS FOR ROOM-TEMPERATURE HALOGENOALUMINATE(III) IONIC LIQUIDS [J].
AVENT, AG ;
CHALONER, PA ;
DAY, MP ;
SEDDON, KR ;
WELTON, T .
JOURNAL OF THE CHEMICAL SOCIETY-DALTON TRANSACTIONS, 1994, (23) :3405-3413
[6]   Direct scaling of primitive valence force constants: An alternative approach to scaled quantum mechanical force fields [J].
Baker, J ;
Jarzecki, AA ;
Pulay, P .
JOURNAL OF PHYSICAL CHEMISTRY A, 1998, 102 (08) :1412-1424
[7]   CO2 capture by a task-specific ionic liquid [J].
Bates, ED ;
Mayton, RD ;
Ntai, I ;
Davis, JH .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2002, 124 (06) :926-927
[8]   DENSITY-FUNCTIONAL THERMOCHEMISTRY .3. THE ROLE OF EXACT EXCHANGE [J].
BECKE, AD .
JOURNAL OF CHEMICAL PHYSICS, 1993, 98 (07) :5648-5652
[9]   Raman and ab initio studies of simple and binary 1-alkyl-3-methylimidazolium ionic liquids [J].
Berg, RW ;
Deetlefs, M ;
Seddon, KR ;
Shim, I ;
Thompson, JM .
JOURNAL OF PHYSICAL CHEMISTRY B, 2005, 109 (40) :19018-19025
[10]   Hydrophobic, highly conductive ambient-temperature molten salts [J].
Bonhote, P ;
Dias, AP ;
Papageorgiou, N ;
Kalyanasundaram, K ;
Gratzel, M .
INORGANIC CHEMISTRY, 1996, 35 (05) :1168-1178