Synthesis of Multiwalled Carbon Nanotubes That Are Both Filled and Coated by SnO2 Nanoparticles and Their High Performance in Lithium-Ion Batteries

被引:76
作者
Xu, Chaohe [1 ]
Sun, Jing [1 ]
Gao, Lian [1 ]
机构
[1] Chinese Acad Sci, Shanghai Inst Ceram, State Key Lab High Performance Ceram & Superfine, Shanghai 200050, Peoples R China
关键词
ANODE MATERIAL; HIGH-CAPACITY; THIN-FILM; COMPOSITE; ELECTRODES; STORAGE; SPHERES;
D O I
10.1021/jp909740h
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Multiwalled carbon nanotubes (MWCNTs) filled and coated with SnO2 nanoparticles (NPs) have been prepared using a simple one-step chemical solution method at 50 degrees C. The SnO2/MWCNT hybrids were characterized by transmission electron microscopy and X-ray diffraction, and the formation mechanism has been discussed. The discharge capacities showed that MWCNTs coated and filled with SnO2 had superior electrochemical performance. The first discharge capacities are 2127.4 and 1880.2 mAh/g at 70 and 200 mA/g and remain at 469 and 362 mAh/g after 40 cycles. Our results demonstrated that they had a better cycling performance at large discharge/charge current densities. The main reason is the huge volume expansion usually occurred in SnO2 NPs during the Li+ insertion/extraction process has been prevented when they were filled into the cavities of MWNTs who have a superior mechanical properties.
引用
收藏
页码:20509 / 20513
页数:5
相关论文
共 39 条
[1]   SnO2/carbon nanotube nanocomposites synthesized in supercritical fluids:: highly efficient materials for use as a chemical sensor and as the anode of a lithium-ion battery [J].
An, Guimin ;
Na, Na ;
Zhang, Xinrong ;
Miao, Zhenjiang ;
Miao, Shiding ;
Ding, Kunlun ;
Liu, Zhimin .
NANOTECHNOLOGY, 2007, 18 (43)
[2]   Thin-film crystalline SnO2-lithium electrodes [J].
Brousse, T ;
Retoux, R ;
Herterich, U ;
Schleich, DM .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1998, 145 (01) :1-4
[3]   Nanomaterials for rechargeable lithium batteries [J].
Bruce, Peter G. ;
Scrosati, Bruno ;
Tarascon, Jean-Marie .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2008, 47 (16) :2930-2946
[4]   The enhanced ethanol sensing properties of multi-walled carbon nanotubes/SnO2 core/shell nanostructures [J].
Chen, Yujin ;
Zhu, Chunling ;
Wang, Taihong .
NANOTECHNOLOGY, 2006, 17 (12) :3012-3017
[5]   Fabrication and characterization of SnO2-RuO2 composite anode thin film for lithium ion batteries [J].
Choi, SH ;
Kim, JS ;
Yoon, YS .
ELECTROCHIMICA ACTA, 2004, 50 (2-3) :547-552
[6]   SnO2 meso-scale tubes: One-step, room temperature electrodeposition synthesis and kinetic investigation for lithium storage [J].
Chou, Shu-Lei ;
Wang, Jia-Zhao ;
Liu, Hua-Kun ;
Dou, Shi-Xue .
ELECTROCHEMISTRY COMMUNICATIONS, 2009, 11 (02) :242-246
[7]   Key factors controlling the reversibility of the reaction of lithium with SnO2 and Sn2BPO6 glass [J].
Courtney, IA ;
Dahn, JR .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1997, 144 (09) :2943-2948
[8]   Facile one-pot synthesis of mesoporous SnO2 microspheres via nanoparticles assembly and lithium storage properties [J].
Demir-Cakan, Rezan ;
Hu, Yong-Sheng ;
Antonietti, Markus ;
Maier, Joachim ;
Titirici, Maria-Magdalena .
CHEMISTRY OF MATERIALS, 2008, 20 (04) :1227-1229
[9]   Nanostructured Sn-C composite as an advanced anode material in high-performance lithium-ion batteries [J].
Derrien, Gaelle ;
Hassoun, Jusef ;
Panero, Stefania ;
Scrosati, Bruno .
ADVANCED MATERIALS, 2007, 19 (17) :2336-+
[10]   Synthesis of polycrystalline SnO2 nanotubes on carbon nanotube template for anode material of lithium-ion battery [J].
Du, Ning ;
Zhang, Hui ;
Chen, Bindi ;
Ma, Xiangyang ;
Huang, Xiaohua ;
Tu, Jiangping ;
Yang, Deren .
MATERIALS RESEARCH BULLETIN, 2009, 44 (01) :211-215