The influence of shell thickness of Au@TiO2 core-shell nanoparticles on the plasmonic enhancement effect in dye-sensitized solar cells

被引:110
作者
Liu, Wei-Liang [1 ]
Lin, Fan-Cheng [1 ]
Yang, Yu-Chen [2 ]
Huang, Chen-Hsien [1 ]
Gwo, Shangjr [2 ,3 ]
Huang, Michael H. [1 ]
Huang, Jer-Shing [1 ,3 ,4 ]
机构
[1] Natl Tsing Hua Univ, Dept Chem, Hsinchu 30013, Taiwan
[2] Natl Tsing Hua Univ, Dept Phys, Hsinchu 30013, Taiwan
[3] Natl Tsing Hua Univ, Ctr Nanotechnol Mat Sci & Microsyst, Hsinchu 30013, Taiwan
[4] Natl Tsing Hua Univ, Frontier Res Ctr Fundamental & Appl Sci Matters, Hsinchu 30013, Taiwan
关键词
METAL NANOPARTICLES; GOLD NANOPARTICLES; REDOX ELECTROLYTE; EFFICIENCY; PHOTOCURRENT; NANOSTRUCTURES; GENERATION; CONVERSION; SIZE;
D O I
10.1039/c3nr02800c
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Plasmonic core-shell nanoparticles (PCSNPs) can function as nanoantennas and improve the efficiency of dye-sensitized solar cells (DSSCs). To achieve maximum enhancement, the morphology of PCSNPs needs to be optimized. Here we precisely control the morphology of Au@TiO2 PCSNPs and systematically study its influence on the plasmonic enhancement effect. The enhancement mechanism was found to vary with the thickness of the TiO2 shell. PCSNPs with a thinner shell mainly enhance the current, whereas particles with a thicker shell improve the voltage. While pronounced plasmonic enhancement was found in the near infrared regime, wavelength-independent enhancement in the visible range was observed and attributed to the plasmonic heating effect. Emission lifetime measurement confirms that N719 molecules neighboring nanoparticles with TiO2 shells exhibit a longer lifetime than those in contact with metal cores. Overall, PCSNPs with a 5 nm shell give the highest efficiency enhancement of 23%. Our work provides a new synthesis route for well-controlled Au@TiO2 core-shell nanoparticles and gains insight into the plasmonic enhancement in DSSCs.
引用
收藏
页码:7953 / 7962
页数:10
相关论文
共 53 条
[1]   Exciton-Plasmon Interactions in Metal-Semiconductor Nanostructures [J].
Achermann, Marc .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2010, 1 (19) :2837-2843
[2]   Enhancement and quenching of single-molecule fluorescence [J].
Anger, P ;
Bharadwaj, P ;
Novotny, L .
PHYSICAL REVIEW LETTERS, 2006, 96 (11)
[3]   Nanoantennas for visible and infrared radiation [J].
Biagioni, Paolo ;
Huang, Jer-Shing ;
Hecht, Bert .
REPORTS ON PROGRESS IN PHYSICS, 2012, 75 (02)
[4]   Photothermal imaging of nanometer-sized metal particles among scatterers [J].
Boyer, D ;
Tamarat, P ;
Maali, A ;
Lounis, B ;
Orrit, M .
SCIENCE, 2002, 297 (5584) :1160-1163
[5]   Plasmonic Dye-Sensitized Solar Cells Using Core-Shell Metal-Insulator Nanoparticles [J].
Brown, Michael D. ;
Suteewong, Teeraporn ;
Kumar, R. Sai Santosh ;
D'Innocenzo, Valerio ;
Petrozza, Annamaria ;
Lee, Michael M. ;
Wiesner, Ulrich ;
Snaith, Henry J. .
NANO LETTERS, 2011, 11 (02) :438-445
[6]   Electrochemical studies of the Co(III)/Co(II)(dbbip)2 redox couple as a mediator for dye-sensitized nanocrystalline solar cells [J].
Cameron, PJ ;
Peter, LM ;
Zakeeruddin, SM ;
Grätzel, M .
COORDINATION CHEMISTRY REVIEWS, 2004, 248 (13-14) :1447-1453
[7]   Hydrothermal Synthesis of Monodispersed Octahedral Gold Nanocrystals with Five Different Size Ranges and Their Self-Assembled Structures [J].
Chang, Chia-Chien ;
Wu, Hsin-Lun ;
Kuo, Chun-Hong ;
Huang, Michael H. .
CHEMISTRY OF MATERIALS, 2008, 20 (24) :7570-7574
[8]   Highly Efficient Light-Harvesting Ruthenium Sensitizer for Thin-Film Dye-Sensitized Solar Cells [J].
Chen, Chia-Yuan ;
Wang, Mingkui ;
Li, Jheng-Ying ;
Pootrakulchote, Nuttapol ;
Alibabaei, Leila ;
Ngoc-le, Cevey-ha ;
Decoppet, Jean-David ;
Tsai, Jia-Hung ;
Graetzel, Carole ;
Wu, Chun-Guey ;
Zakeeruddin, Shaik M. ;
Graetzel, Michael .
ACS NANO, 2009, 3 (10) :3103-3109
[9]   Titanium dioxide nanomaterials: Synthesis, properties, modifications, and applications [J].
Chen, Xiaobo ;
Mao, Samuel S. .
CHEMICAL REVIEWS, 2007, 107 (07) :2891-2959
[10]   Thieno[3,4-b]thiophene-Based Organic Dyes for Dye-Sensitized Solar Cells [J].
Chen, Yung-Chung ;
Chou, Hsien-Hsin ;
Tsai, Ming Chih ;
Chen, Sheng-Yu ;
Lin, Jiann T. ;
Yao, Ching-Fa ;
Chen, Kellen .
CHEMISTRY-A EUROPEAN JOURNAL, 2012, 18 (17) :5430-5437