Structural requirement of bilin chromophore for the photosensory specificity of phytochromes A and B

被引:35
作者
Hanzawa, H
Shinomura, T
Inomata, K
Kakiuchi, T
Kinoshita, H
Wada, K
Furuya, M [1 ]
机构
[1] Hitachi Ltd, Adv Res Lab, Hatoyama, Saitama 3500395, Japan
[2] Kanazawa Univ, Grad Sch Nat Sci & Technol, Kanazawa, Ishikawa 9201192, Japan
关键词
D O I
10.1073/pnas.062713399
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Phytochromes are an important class of chromoproteins that regulate many cellular and developmental responses to light in plants. The model plant species Arabidopsis thaliana possesses five phytochromes, which mediate distinct and overlapping responses to light. Photobiological analyses have established that, under continuous irradiation, phytochrome A is primarily responsible for plant's sensitivity to far-red light, whereas the other phytochromes respond mainly to red light. The present study reports that the far-red light sensitivity of phytochrome A depends on the structure of the linear tetrapyrrole (bilin) prosthetic group. By reconstitution of holophytochrome in vivo through feeding various synthetic bilins to chromophore-deficient mutants of Arabidopsis, the requirement for a double bond on the bilin D-ring for rescuing phytochrome A function has been established. In contrast, we show that phytochrome B function can be rescued with various bilin analogs with saturated D-ring substituents.
引用
收藏
页码:4725 / 4729
页数:5
相关论文
共 51 条
[1]   Phytochrome photochromism probed by site-directed mutations and chromophore esterification [J].
Bhoo, SH ;
Hirano, T ;
Jeong, HY ;
Lee, JG ;
Furuya, M ;
Song, PS .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1997, 119 (48) :11717-11718
[2]   A REVERSIBLE PHOTOREACTION CONTROLLING SEED GERMINATION [J].
BORTHWICK, HA ;
HENDRICKS, SB ;
PARKER, MW ;
TOOLE, EH ;
TOOLE, VK .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1952, 38 (08) :662-666
[3]  
BOYLAN M, 1994, PLANT CELL, V6, P449, DOI 10.1105/tpc.6.3.449
[4]   The phototropin family of photoreceptors [J].
Briggs, WR ;
Beck, CF ;
Cashmore, AR ;
Christie, JM ;
Hughes, J ;
Jarillo, JA ;
Kagawa, T ;
Kanegae, H ;
Liscum, E ;
Nagatani, A ;
Okada, K ;
Salomon, M ;
Rüdiger, W ;
Sakai, T ;
Takano, M ;
Wada, M ;
Watson, JC .
PLANT CELL, 2001, 13 (05) :993-997
[5]   DETECTION, ASSAY, AND PRELIMINARY PURIFICATION OF THE PIGMENT CONTROLLING PHOTORESPONSIVE DEVELOPMENT OF PLANTS [J].
BUTLER, WL ;
NORRIS, KH ;
SIEGELMAN, HW ;
HENDRICKS, SB .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1959, 45 (12) :1703-1708
[6]   THE PHYTOCHROME APOPROTEIN FAMILY IN ARABIDOPSIS IS ENCODED BY 5 GENES - THE SEQUENCES AND EXPRESSION OF PHYD AND PHYE [J].
CLACK, T ;
MATHEWS, S ;
SHARROCK, RA .
PLANT MOLECULAR BIOLOGY, 1994, 25 (03) :413-427
[7]   Bacteriophytochromes: Phytochrome-like photoreceptors from nonphotosynthetic eubacteria [J].
Davis, SJ ;
Vener, AV ;
Vierstra, RD .
SCIENCE, 1999, 286 (5449) :2517-2520
[8]   The Arabidopsis thaliana HY1 locus, required for phytochrome-chromophore biosynthesis, encodes a protein related to heme oxygenases [J].
Davis, SJ ;
Kurepa, J ;
Vierstra, RD .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (11) :6541-6546
[9]   INVITRO ASSEMBLY OF APOPHYTOCHROME AND APOPHYTOCHROME DELETION MUTANTS EXPRESSED IN YEAST WITH PHYCOCYANOBILIN [J].
DEFORCE, L ;
TOMIZAWA, KI ;
ITO, N ;
FARRENS, D ;
SONG, PS ;
FURUYA, M .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1991, 88 (23) :10392-10396
[10]   Arabidopsis phytochromes C and E have different spectral characteristics from those of phytochromes A and B [J].
Eichenberg, K ;
Bäurle, I ;
Paulo, N ;
Sharrock, RA ;
Rüdiger, W ;
Schäfer, E .
FEBS LETTERS, 2000, 470 (02) :107-112