The activity of five glutamic acid analogues substituted in position 3 or 4 by a methyl (3T, 3E, 4T, and 4E) or a methylene group (4M) has been examined at one cloned Glu receptor subtype, mGluR,. These analogues interact with glutamate receptors of the central nervous system, especially the ligand 4T [(2S,4S)-4-methylglutamic acid] at the metabotropic glutamate receptor mGluR,. It was observed that only the 4T isomer is as potent an agonist as glutamic acid, whereas other isomers are less active. Furthermore, 4E [(2S,4R)-4-methylglutamic acid] exhibited an exceptional selectivity for the KA ionotropic receptor Subtype while 4M [(2S)-4-methyleneglutamic acid] was active at the NMDA receptors. These molecules represent suitable tools among a population of similar glutamate analogues for a classical structure-function relationship study. We have undertaken a conformational analysis by H-1 and C-13 NMR spectroscopy and molecular modelling of these molecules. Hetero- and homonuclear coupling constants were measured in order to assign the diastereotopic methylene protons at C(3) or C(4), and used for comparison in molecular dynamics (MD) simulations. The hydrogen bonding possibility, steric effects or electrostatic interactions may be a considerable influence in stabilizing a conformational population in D2O solution. The conformations may be grouped by the two backbone torsion angles, chi(1) [alpha-CO2--C(2)-C(3)-C(4)] and chi(2) [(NC)-N-+(2)-C(3)-C(4)-gamma CO2-] and by the two characteristic distances between the potentially active functional groups, alpha N+-gamma CO2- (d(1)) and alpha CO2--gamma CO2- (d(2)). The conformational preferences in solution of 4T, 4E and (3T, 3E, 4M) are discussed in the light of the physical features known for a specific metabotropic agonist (ACPD) and specific ionotropic agonists (KA) and (NMDA), respectively. (C) 1997, Elsevier Science Ltd.