Fabrication and Dispersion of Gold-Shell-Protected Magnetite Nanoparticles: Systematic Control Using Polyethyleneimine

被引:239
作者
Goon, Ian Y. [1 ]
Lai, Leo M. H. [2 ]
Lim, May [1 ]
Munroe, Paul [3 ]
Gooding, J. Justin [2 ]
Amal, Rose [1 ]
机构
[1] Univ New S Wales, ARC Ctr Excellence Funct Nanomat, Sch Chem Sci & Engn, Sydney, NSW 2052, Australia
[2] Univ New S Wales, Sch Chem, Sydney, NSW 2052, Australia
[3] Univ New S Wales, Electron Microscope Unit, Sydney, NSW 2052, Australia
关键词
ACID ADSORPTION; PARTICLE-SIZE; AGGREGATION; SUSPENSIONS; KINETICS; UNIFORM; DESIGN; GENE; PH;
D O I
10.1021/cm8025329
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A detailed study of the aqueous synthesis of composite 50-150 nm magnetite-gold core-shell nanoparticles with the ability to engineer the coverage of gold on the magnetite particle surface is presented. This method utilizes polyethyleneimine for the dual functions of attaching 2 nm gold nanoparticle seeds onto magnetite particles as well as preventing the formation of large aggregates. Saturation of the magnetite surface with gold seeds facilitates the subsequent overlaying of gold to form magnetically responsive core-shell particles, which exhibit surface plasmon resonance. In-depth characterization and quantification of the gold-shell formation process was performed using transmission electron microscopy, X-ray photoelectron spectroscopy, energy-dispersive spectroscopy, and inductively coupled plasma optical emission spectroscopy. Dynamic light scattering studies also showed that PEI coating of synthesized particles served as an excellent barrier against aggregation. The ability of the gold shell to protect the magnetite cores was tested by subjecting the particles to a magnetite-specific dissolution procedure. Elemental analysis of dissolved species revealed that the gold coating of magnetite cores imparts remarkable resistance to iron dissolution. The ability to engineer gold coverage on particle surfaces allows for controlled biofunctionalization, whereas their resistance to dissolution ensures applicability in harsh environments.
引用
收藏
页码:673 / 681
页数:9
相关论文
共 44 条
[1]   EFFECT OF FULVIC-ACID ADSORPTION ON THE AGGREGATION KINETICS AND STRUCTURE OF HEMATITE PARTICLES [J].
AMAL, R ;
RAPER, JA ;
WAITE, TD .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 1992, 151 (01) :244-257
[2]   STRUCTURE AND KINETICS OF AGGREGATING COLLOIDAL HEMATITE [J].
AMAL, R ;
COURY, JR ;
RAPER, JA ;
WALSH, WP ;
WAITE, TD .
COLLOIDS AND SURFACES, 1990, 46 (01) :1-19
[3]   Plasmon resonance shifts of Au-coated Au2S nanoshells: Insight into multicomponent nanoparticle growth [J].
Averitt, RD ;
Sarkar, D ;
Halas, NJ .
PHYSICAL REVIEW LETTERS, 1997, 78 (22) :4217-4220
[4]   Bifunctional Au-Fe3O4 nanopartides for protein separation [J].
Bao, Jie ;
Chen, Wei ;
Liu, Taotao ;
Zhu, Yulin ;
Jin, Peiyuan ;
Wang, Leyu ;
Liu, Junfeng ;
Wei, Yongge ;
Li, Yadong .
ACS NANO, 2007, 1 (04) :293-298
[5]   Controlled clustering of superparamagnetic nanoparticles using block copolymers: Design of new contrast agents for magnetic resonance imaging [J].
Berret, JF ;
Schonbeck, N ;
Gazeau, F ;
El Kharrat, D ;
Sandre, O ;
Vacher, A ;
Airiau, M .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2006, 128 (05) :1755-1761
[6]   A VERSATILE VECTOR FOR GENE AND OLIGONUCLEOTIDE TRANSFER INTO CELLS IN CULTURE AND IN-VIVO - POLYETHYLENIMINE [J].
BOUSSIF, O ;
LEZOUALCH, F ;
ZANTA, MA ;
MERGNY, MD ;
SCHERMAN, D ;
DEMENEIX, B ;
BEHR, JP .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (16) :7297-7301
[7]   Seeding of colloidal Au nanoparticle solutions. 2. Improved control of particle size and shape [J].
Brown, KR ;
Walter, DG ;
Natan, MJ .
CHEMISTRY OF MATERIALS, 2000, 12 (02) :306-313
[8]   SYNTHESIS OF THIOL-DERIVATIZED GOLD NANOPARTICLES IN A 2-PHASE LIQUID-LIQUID SYSTEM [J].
BRUST, M ;
WALKER, M ;
BETHELL, D ;
SCHIFFRIN, DJ ;
WHYMAN, R .
JOURNAL OF THE CHEMICAL SOCIETY-CHEMICAL COMMUNICATIONS, 1994, (07) :801-802
[9]   Attachment of gold nanograins onto colloidal magnetite nanocrystals [J].
Caruntu, D ;
Cushing, BL ;
Caruntu, G ;
O'Connor, CJ .
CHEMISTRY OF MATERIALS, 2005, 17 (13) :3398-3402
[10]   Magnetic nanoparticles for drug delivery [J].
Dobson, J .
DRUG DEVELOPMENT RESEARCH, 2006, 67 (01) :55-60