Electromodulated doping of the hole transport layer in a small molecule organic light-emitting diode

被引:10
作者
Lane, Paul A. [1 ]
Chen, Song [2 ]
So, Franky [2 ]
机构
[1] USN, Res Lab, Washington, DC 20375 USA
[2] Univ Florida, Dept Mat Sci & Engn, Athens, AL 35611 USA
来源
JOURNAL OF PHOTONICS FOR ENERGY | 2011年 / 1卷
关键词
organic electroluminescence; organic light-emitting diode; electroabsorption; spectroscopy; doping; ELECTRIC-FIELD DISTRIBUTION; ELECTROABSORPTION SPECTROSCOPY; ELECTROLUMINESCENT DEVICES; BUFFER LAYER; POLYMER; INJECTION; PERFORMANCE; INSERTION; ALUMINUM; BARRIERS;
D O I
10.1117/1.3569109
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Electromodulation spectroscopy has been used to probe the effect of a polymer hole injection layer on electric fields and charge injection in vacuum-deposited organic light-emitting diodes. The electromodulation spectrum consists of electroabsorption of the transport layers and excited state absorption of trapped cations in the hole transport layer. Field-dependent modulation of trapped charge at the interface between the injection and transport layers substantially modifies the electric field distribution within the device. In reverse bias, the electric field strength is suppressed within the hole transport layer and concentrated in the electron transport layer. In forward bias, field-dependent doping of the hole transport layer dominates the electromodulation spectrum. The field-dependent trap density is calculated to be of order 10(13) cm(-2), equivalent to mu C/cm(2) charge density. The built-in potential is estimated to be between 2.2 and 2.5 V, consistent with low carrier injection barriers. (C) 2011 Society of Photo-Optical Instrumentation Engineers (SPIE). [DOI: 10.1117/1.3569109]
引用
收藏
页数:12
相关论文
共 36 条
[1]   Electronic line-up in light-emitting diodes with alkali-halide/metal cathodes [J].
Brown, TM ;
Friend, RH ;
Millard, IS ;
Lacey, DJ ;
Butler, T ;
Burroughes, JH ;
Cacialli, F .
JOURNAL OF APPLIED PHYSICS, 2003, 93 (10) :6159-6172
[2]   Built-in field electroabsorption spectroscopy of polymer light-emitting diodes incorporating a doped poly(3,4-ethylene dioxythiophene) hole injection layer [J].
Brown, TM ;
Kim, JS ;
Friend, RH ;
Cacialli, F ;
Daik, R ;
Feast, WJ .
APPLIED PHYSICS LETTERS, 1999, 75 (12) :1679-1681
[3]   LIGHT-EMITTING-DIODES BASED ON CONJUGATED POLYMERS [J].
BURROUGHES, JH ;
BRADLEY, DDC ;
BROWN, AR ;
MARKS, RN ;
MACKAY, K ;
FRIEND, RH ;
BURN, PL ;
HOLMES, AB .
NATURE, 1990, 347 (6293) :539-541
[4]   Direct measurement of conjugated polymer electronic excitation energies using metal/polymer/metal structures [J].
Campbell, IH ;
Hagler, TW ;
Smith, DL ;
Ferraris, JP .
PHYSICAL REVIEW LETTERS, 1996, 76 (11) :1900-1903
[5]   Optical properties of single carrier polymer diodes under high electrical injection [J].
Campbell, IH ;
Smith, DL ;
Neef, CJ ;
Ferraris, JP .
APPLIED PHYSICS LETTERS, 2001, 78 (03) :270-272
[6]   Polymer light-emitting diodes with polyethylene dioxythiophene-polystyrene sulfonate as the transparent anode [J].
Cao, Y ;
Yu, G ;
Zhang, C ;
Menon, R ;
Heeger, AJ .
SYNTHETIC METALS, 1997, 87 (02) :171-174
[7]   Polymeric anodes for improved polymer light-emitting diode performance [J].
Carter, SA ;
Angelopoulos, M ;
Karg, S ;
Brock, PJ ;
Scott, JC .
APPLIED PHYSICS LETTERS, 1997, 70 (16) :2067-2069
[8]   Investigation of the interface formation between calcium and tris-(8-hydroxy quinoline) aluminum [J].
Choong, VE ;
Mason, MG ;
Tang, CW ;
Gao, YG .
APPLIED PHYSICS LETTERS, 1998, 72 (21) :2689-2691
[9]   Highly Efficient Hole Injection Using Polymeric Anode Materials for Small-Molecule Organic Light-Emitting Diodes [J].
Choudhury, Koushik Roy ;
Lee, Jaewon ;
Chopra, Neetu ;
Gupta, Alok ;
Jiang, Xuezhong ;
Amy, Fobrice ;
So, Franky .
ADVANCED FUNCTIONAL MATERIALS, 2009, 19 (03) :491-496
[10]   The effect of interfacial layer on the performance of organic light-emitting diodes [J].
Choulis, SA ;
Choong, VE ;
Mathai, MK ;
So, F .
APPLIED PHYSICS LETTERS, 2005, 87 (11)