The NAD+-dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control

被引:1103
作者
Nakahata, Yasukazu [1 ]
Kaluzova, Milota [1 ]
Grimaldi, Benedetto [1 ]
Sahar, Saurabh [1 ]
Hirayama, Jun [1 ]
Chen, Danica [2 ]
Guarente, Leonard P. [2 ]
Sassone-Corsi, Paolo [1 ]
机构
[1] Univ Calif Irvine, Dept Pharmacol, Irvine, CA 92697 USA
[2] MIT, Dept Biol, Cambridge, MA 02139 USA
关键词
D O I
10.1016/j.cell.2008.07.002
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Circadian rhythms govern a large array of metabolic and physiological functions. The central clock protein CLOCK has HAT properties. It directs acetylation of histone H3 and of its dimerization partner BMAL1 at Lys537, an event essential for circadian function. We show that the HDAC activity of the NAD(+)- dependent SIRT1 enzyme is regulated in a circadian manner, correlating with rhythmic acetylation of BMAL1 and H3 Lys9/Lys14 at circadian promoters. SIRT1 associates with CLOCK and is recruited to the CLOCK: BMAL1 chromatin complex at circadian promoters. Genetic ablation of the Sirt1 gene or pharmacological inhibition of SIRT1 activity lead to disturbances in the circadian cycle and in the acetylation of H3 and BMAL1. Finally, using liver-specific SIRT1 mutant mice we show that SIRT1 contributes to circadian control in vivo. We propose that SIRT1 functions as an enzymatic rheostat of circadian function, transducing signals originated by cellular metabolites to the circadian clock.
引用
收藏
页码:329 / 340
页数:12
相关论文
共 74 条
[1]   A RAPID MICROPREPARATION TECHNIQUE FOR EXTRACTION OF DNA-BINDING PROTEINS FROM LIMITING NUMBERS OF MAMMALIAN-CELLS [J].
ANDREWS, NC ;
FALLER, DV .
NUCLEIC ACIDS RESEARCH, 1991, 19 (09) :2499-2499
[2]   Functional identification of the mouse circadian Clock gene by transgenic BAC rescue [J].
Antoch, MP ;
Song, EJ ;
Chang, AM ;
Vitaterna, MH ;
Zhao, YL ;
Wilsbacher, LD ;
Sangoram, AM ;
King, DP ;
Pinto, LH ;
Takahashi, JS .
CELL, 1997, 89 (04) :655-667
[3]   Genetic links between diet and lifespan: shared mechanisms from yeast to humans [J].
Bishop, Nicholas A. ;
Guarente, Leonard .
NATURE REVIEWS GENETICS, 2007, 8 (11) :835-844
[4]   Calorie restriction, SIRT1 and metabolism: Understanding longevity [J].
Bordone, L ;
Guarente, L .
NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2005, 6 (04) :298-305
[5]   Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase [J].
Brunet, A ;
Sweeney, LB ;
Sturgill, JF ;
Chua, KF ;
Greer, PL ;
Lin, YX ;
Tran, H ;
Ross, SE ;
Mostoslavsky, R ;
Cohen, HY ;
Hu, LS ;
Cheng, HL ;
Jedrychowski, MP ;
Gygi, SP ;
Sinclair, DA ;
Alt, FW ;
Greenberg, ME .
SCIENCE, 2004, 303 (5666) :2011-2015
[6]   Circadian clock control by SUMOylation of BMAL1 [J].
Cardone, L ;
Hirayamna, J ;
Giordano, F ;
Tarnaru, T ;
Palvimo, JJ ;
Sassone-Corsi, P .
SCIENCE, 2005, 309 (5739) :1390-1394
[7]   A conserved DNA damage response pathway responsible for coupling the cell division cycle to the circadian and metabolic cycles [J].
Chen, Zheng ;
McKnight, Steven L. .
CELL CYCLE, 2007, 6 (23) :2906-2912
[8]   Developmental defects and p53 hyperacetylation in Sir2 homolog (SIRT1)-deficient mice [J].
Cheng, HL ;
Mostoslavsky, R ;
Saito, S ;
Manis, JP ;
Gu, YS ;
Patel, P ;
Bronson, R ;
Appella, E ;
Alt, FW ;
Chua, KF .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (19) :10794-10799
[9]   Synergistic coupling of histone H3 phosphorylation and acetylation in response to epidermal growth factor stimulation [J].
Cheung, P ;
Tanner, KG ;
Cheung, WL ;
Sassone-Corsi, P ;
Denu, JM ;
Allis, CD .
MOLECULAR CELL, 2000, 5 (06) :905-915
[10]   Signaling to chromatin through histone modifications [J].
Cheung, P ;
Allis, CD ;
Sassone-Corsi, P .
CELL, 2000, 103 (02) :263-271