Transgenic analysis of sugar beet xyloglucan endotransglucosylase/hydrolase Bv-XTH1 and Bv-XTH2 promoters reveals overlapping tissue-specific and wound-inducible expression profiles

被引:14
作者
Dimmer, E
Roden, L
Cai, DG
Kingsnorth, C
Mutasa-Göttgens, E
机构
[1] Brooms Barn Res Stn, Bury St Edmunds IP28 6NP, Suffolk, England
[2] Univ Kiel, Inst Pflanzenbau & Pflanzenzuchtung, D-24098 Kiel, Germany
基金
英国生物技术与生命科学研究理事会;
关键词
genetic engineering; sugar beet; tissue-specific promoter; XTH;
D O I
10.1046/j.1467-7652.2004.00056.x
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
The identification and analysis of tissue-specific gene regulatory elements will improve our knowledge of the molecular mechanisms that control the growth and development of different plant tissues and offer potentially useful tools for the genetic engineering of plants. A polymerase chain reaction (PCR)-based 5'-genome walk from sequences of an isolated sugar beet xyloglucan endo-transglucosylase hydrolase (XTH) gene led to the isolation of two independent upstream fragments. They were 1332 and 2163 base pairs upstream of the XTH ATG start site, respectively. In vivo transgenic assays in sugar beet hairy roots and Arabidopsis thaliana revealed that both fragments had promoter function and, in A. thaliana, directed expression in vascular tissues within the root, leaves and petals. Promoter activity was also observed in the leaf trichomes and within rapidly expanding stem internodes. Expression driven by both promoters was found to be wound inducible. Overall, the spatial and temporal expression pattern of these promoters suggested that the corresponding Bv-XTH genes (designated Bv-XTH1 and Bv-XTH2) may be involved in secondary cell wall formation. This work provides new insights on molecular mechanisms that could be exploited for the genetic engineering of sugar beet crops.
引用
收藏
页码:127 / 139
页数:13
相关论文
共 63 条
[1]   DIFFERENTIATION OF VASCULAR TISSUES [J].
ALONI, R .
ANNUAL REVIEW OF PLANT PHYSIOLOGY AND PLANT MOLECULAR BIOLOGY, 1987, 38 :179-204
[2]   BASIC LOCAL ALIGNMENT SEARCH TOOL [J].
ALTSCHUL, SF ;
GISH, W ;
MILLER, W ;
MYERS, EW ;
LIPMAN, DJ .
JOURNAL OF MOLECULAR BIOLOGY, 1990, 215 (03) :403-410
[3]  
ANTONIW JF, 1997, AM LIFE SCI, V21, P12
[4]   CHARACTERIZATION OF 2 TOMATO FRUIT-EXPRESSED CDNAS ENCODING XYLOGLUCAN ENDO-TRANSGLYCOSYLASE [J].
ARROWSMITH, DA ;
DESILVA, J .
PLANT MOLECULAR BIOLOGY, 1995, 28 (03) :391-403
[5]  
BARR DJS, 1988, VIRUSES FUNGAL VECTO, P123
[6]   Xyloglucan endotransglycosylases have a function during the formation of secondary cell walls of vascular tissues [J].
Bourquin, V ;
Nishikubo, N ;
Abe, H ;
Brumer, H ;
Denman, S ;
Eklund, M ;
Christiernin, M ;
Teeri, TT ;
Sundberg, B ;
Mellerowicz, EJ .
PLANT CELL, 2002, 14 (12) :3073-3088
[7]   RNAs from all categories generate retrosequences that may be exapted as novel genes or regulatory elements [J].
Brosius, J .
GENE, 1999, 238 (01) :115-134
[8]  
BUCHER P, 1994, P 2 INT C INT SYST M, P53
[9]   Xyloglucan endotransglycosylases: diversity of genes, enzymes and potential wall-modifying functions [J].
Campbell, P ;
Braam, J .
TRENDS IN PLANT SCIENCE, 1999, 4 (09) :361-366
[10]  
Caño-Delgado AI, 2000, DEVELOPMENT, V127, P3395