Dissecting the broad substrate specificity of human 3-methyladenine-DNA glycosylase

被引:151
作者
O'Brien, PJ [1 ]
Ellenberger, T [1 ]
机构
[1] Harvard Univ, Sch Med, Dept Biol Chem & Mol Pharmacol, Boston, MA 02115 USA
关键词
D O I
10.1074/jbc.M312232200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Human alkyladenine-DNA glycosylase (AAG) catalyzes the excision of a broad range of modified bases, protecting the genome from many types of alkylative and oxidative DNA damage. We have investigated how AAG discriminates against normal DNA bases, while accommodating a structurally diverse set of lesioned bases, by measuring the rates of AAG-catalyzed (k(st)) and spontaneous N-glycosidic bond hydrolysis (k(non)) for damaged and undamaged DNA oligonucleotides. The rate enhancements for excision of different bases reveal that AAG is most adept at excising the deaminated lesion hypoxanthine (k(st)/k(non) = 10(8)), suggesting that enzymatic activity may have evolved in response to this lesion. Comparisons of the rate enhancements for excision of normal and modified purine nucleobases provide evidence that AAG excludes the normal purines via steric clashes with the exocyclic amino groups of adenine and guanine. However, methylated purines are more chemically labile, and only modest rate enhancements are required for their efficient excision. Base flipping also contributes to specificity as destabilized mismatched base pairs are better substrates than stable Watson-Crick pairs, and many of the lesions recognized by AAG are compromised in their ability to base pair. These findings suggest that AAG reconciles a broad substrate tolerance with the biological imperative to avoid normal DNA by excluding normal bases from the active site rather than by specifically recognizing each lesion.
引用
收藏
页码:9750 / 9757
页数:8
相关论文
共 44 条
[1]  
AAMODT RM, 2004, IN PRESS J BIOL CHEM
[2]   Base excision and DNA binding activities of human alkyladenine DNA glycosylase are sensitive to the base paired with a lesion [J].
Abner, CW ;
Lau, AY ;
Ellenberger, T ;
Bloom, LB .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (16) :13379-13387
[3]   Measurement of the absolute temporal coupling between DNA binding and base flipping [J].
Allan, BW ;
Reich, NO ;
Beechem, JM .
BIOCHEMISTRY, 1999, 38 (17) :5308-5314
[4]   Release of normal bases from intact DNA by a native DNA repair enzyme [J].
Berdal, KG ;
Johansen, RF ;
Seeberg, E .
EMBO JOURNAL, 1998, 17 (02) :363-367
[5]   Binding of specific DNA base-pair mismatches by N-methylpurine-DNA glycosylase and its implication in initial damage recognition [J].
Biswas, T ;
Clos, LJ ;
SantaLucia, J ;
Mitra, S ;
Roy, R .
JOURNAL OF MOLECULAR BIOLOGY, 2002, 320 (03) :503-513
[6]   DNA repair excision nuclease attacks undamaged DNA - A potential source of spontaneous mutations [J].
Branum, ME ;
Reardon, JT ;
Sancar, A .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (27) :25421-25426
[7]   Heat-induced formation of reactive oxygen species and 8-oxoguanine, a biomarker of damage to DNA [J].
Bruskov, VI ;
Malakhova, LV ;
Masalimov, ZK ;
Chernikov, AV .
NUCLEIC ACIDS RESEARCH, 2002, 30 (06) :1354-1363
[8]   Active-site clashes prevent the human 3-methyladenine DNA glycosylase from improperly removing bases [J].
Connor, EE ;
Wyatt, MD .
CHEMISTRY & BIOLOGY, 2002, 9 (09) :1033-1041
[9]  
DUNCAN BK, 1981, ENZYMES, V14, P565
[10]   Base excision repair deficient mice lacking the Aag alkyladenine DNA glycosylase [J].
Engelward, BP ;
Weeda, G ;
Wyatt, MD ;
Broekhof, JLM ;
deWit, J ;
Donker, I ;
Allan, JM ;
Gold, B ;
Hoeijmakers, JHJ ;
Samson, LD .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (24) :13087-13092