Greenberger-Horne-Zeilinger paradoxes with symmetric multiport beam splitters

被引:27
作者
Zukowski, M [1 ]
Kaszlikowski, D [1 ]
机构
[1] Univ Gdansk, Inst Fizyki Teroetycznej & Astrofizyki, PL-80952 Gdansk, Poland
来源
PHYSICAL REVIEW A | 1999年 / 59卷 / 05期
关键词
D O I
10.1103/PhysRevA.59.3200
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In a gedanken experiment N particles in a generalized Greenberger-Horne-Zeilinger-(GHZ)-type beam-entangled state (each particle can be in one of M beams) are fed into N symmetric 2M-port beam splitters (spatially separated). Correlation functions for such a process (using the Bell numbers value assignment approach) reveal a remarkable symmetry. For N = M + 1 greater than or equal to 4 a series of GHZ paradoxes are shown. [S1050-2947(99)04704-6].
引用
收藏
页码:3200 / 3203
页数:4
相关论文
共 38 条
[1]   PERSPECTIVE OF EINSTEIN-PODOLSKY-ROSEN SPIN CORRELATIONS IN THE PHASE-SPACE FORMULATION FOR ARBITRARY VALUES OF THE SPIN [J].
AGARWAL, GS .
PHYSICAL REVIEW A, 1993, 47 (06) :4608-4615
[2]   HIDDEN-VARIABLES AND QUANTUM-MECHANICAL PROBABILITIES FOR GENERALIZED SPIN-S SYSTEMS [J].
ARDEHALI, M .
PHYSICAL REVIEW D, 1991, 44 (10) :3336-3341
[3]   BELL INEQUALITIES WITH A MAGNITUDE OF VIOLATION THAT GROWS EXPONENTIALLY WITH THE NUMBER OF PARTICLES [J].
ARDEHALI, M .
PHYSICAL REVIEW A, 1992, 46 (09) :5375-5378
[4]   ON PROBLEM OF HIDDEN VARIABLES IN QUANTUM MECHANICS [J].
BELL, JS .
REVIEWS OF MODERN PHYSICS, 1966, 38 (03) :447-&
[5]  
Bell JS, 1964, Physics, V1, P195, DOI [10.1103/Physics-PhysiqueFizika.1.195, DOI 10.1103/PHYSICSPHYSIQUEFIZIKA.1.195]
[6]   Observation of three-photon Greenberger-Horne-Zeilinger entanglement [J].
Bouwmeester, D ;
Pan, JW ;
Daniell, M ;
Weinfurter, H ;
Zeilinger, A .
PHYSICAL REVIEW LETTERS, 1999, 82 (07) :1345-1349
[7]   Can quantum-mechanical description of physical reality be considered complete? [J].
Einstein, A ;
Podolsky, B ;
Rosen, N .
PHYSICAL REVIEW, 1935, 47 (10) :0777-0780
[8]   BELL INEQUALITIES WITH A RANGE OF VIOLATION THAT DOES NOT DIMINISH AS THE SPIN BECOMES ARBITRARILY LARGE [J].
GARG, A ;
MERMIN, ND .
PHYSICAL REVIEW LETTERS, 1982, 49 (13) :901-904
[9]  
GLEASON AM, 1957, J MATH MECH, V6, P885
[10]   BELL THEOREM WITHOUT INEQUALITIES [J].
GREENBERGER, DM ;
HORNE, MA ;
SHIMONY, A ;
ZEILINGER, A .
AMERICAN JOURNAL OF PHYSICS, 1990, 58 (12) :1131-1143