Genetic and biochemical analysis of the twin-arginine translocation pathway in halophilic archaea

被引:61
作者
Dilks, M [1 ]
Giménez, MI [1 ]
Pohlschröder, M [1 ]
机构
[1] Univ Penn, Dept Biol, Philadelphia, PA 19104 USA
关键词
D O I
10.1128/JB.187.23.8104-8113.2005
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
The twin-arginine translocation (Tat) pathway is present in a wide variety of prokaryotes and is capable of exporting partially or fully folded proteins from the cytoplasm. Although diverse classes of proteins are transported via the Tat pathway, in most organisms it facilitates the secretion of a relatively small number of substrates compared to the Sec pathway. However, computational evidence suggests that haloarchaea route nearly all secreted proteins to the Tat pathway. We have expanded previous computational analyses of the haloarchaeal Tat pathway and initiated in vivo characterization of the Tat machinery in a model haloarchaeon, Haloferax volcanii. Consistent with the predicted usage of the this pathway in the haloarchaea, we determined that three of the four identified tat genes in Haloferax volcanii are essential for viability when grown aerobically in complex medium. This represents the first report of an organism that requires the Tat pathway for viability when grown under such conditions. Deletion of the nonessential gene had no effect on the secretion of a verified substrate of the Tat pathway. The two TatA paralogs TatAo and TatAt were detected in both the membrane and cytoplasm and could be copurified from the latter fraction. Using size exclusion chromatography to further characterize cytoplasmic and membrane TatA proteins, we find these proteins present in high-molecular-weight complexes in both cellular fractions.
引用
收藏
页码:8104 / 8113
页数:10
相关论文
共 32 条
[1]   Differential interactions between a twin-arginine signal peptide and its translocase in Escherichia coli [J].
Alami, M ;
Lüke, I ;
Deitermann, S ;
Eisner, G ;
Koch, HG ;
Brunner, J ;
Müller, M .
MOLECULAR CELL, 2003, 12 (04) :937-946
[2]   Development of additional selectable markers for the halophilic Archaeon Haloferax volcanii based on the leuB and trpA genes [J].
Allers, T ;
Ngo, HP ;
Mevarech, M ;
Lloyd, RG .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2004, 70 (02) :943-953
[3]   Salinibacter ruber gen. nov., sp nov., a novel, extremely halophilic member of the Bacteria from saltern crystallizer ponds [J].
Antón, J ;
Oren, A ;
Benlloch, S ;
Rodríguez-Valera, F ;
Amann, R ;
Rosselló-Mora, R .
INTERNATIONAL JOURNAL OF SYSTEMATIC AND EVOLUTIONARY MICROBIOLOGY, 2002, 52 :485-491
[4]   Genome sequence of Haloarcula marismortui:: A halophilic archaeon from the Dead Sea [J].
Baliga, NS ;
Bonneau, R ;
Facciotti, MT ;
Pan, M ;
Glusman, G ;
Deutsch, EW ;
Shannon, P ;
Chiu, YL ;
Gan, RR ;
Hung, PL ;
Date, SV ;
Marcotte, E ;
Hood, L ;
Ng, WV .
GENOME RESEARCH, 2004, 14 (11) :2221-2234
[5]   A common export pathway for proteins binding complex redox cofactors? [J].
Berks, BC .
MOLECULAR MICROBIOLOGY, 1996, 22 (03) :393-404
[6]   Development of a gene knockout system for the halophilic archaeon Haloferax volcanii by use of the pyrE gene [J].
Bitan-Banin, G ;
Ortenberg, R ;
Mevarech, M .
JOURNAL OF BACTERIOLOGY, 2003, 185 (03) :772-778
[7]   Isolation and characterization of bifunctional Escherichia coli TatA mutant proteins that allow efficient Tat-dependent protein translocation in the absence of TatB [J].
Blaudeck, N ;
Kreutzenbeck, P ;
Müller, M ;
Sprenger, GA ;
Freudl, R .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2005, 280 (05) :3426-3432
[8]   REGULATION OF PAP PILIN PHASE VARIATION BY A MECHANISM INVOLVING DIFFERENTIAL DAM METHYLATION STATES [J].
BLYN, LB ;
BRAATEN, BA ;
LOW, DA .
EMBO JOURNAL, 1990, 9 (12) :4045-4054
[9]   Protein transport in the halophilic archaeon ARTICLE Halobacterium sp NRC-1:: a major role for the twin-arginine translocation pathway? [J].
Bolhuis, A .
MICROBIOLOGY-SGM, 2002, 148 :3335-3346
[10]   Structural organization of the twin-arginine translocation system in Streptomyces lividans [J].
De Keersmaeker, S ;
Van Mellaert, L ;
Schaerlaekens, K ;
Van Dessel, W ;
Vrancken, K ;
Lammertyn, E ;
Anné, J ;
Geukens, N .
FEBS LETTERS, 2005, 579 (03) :797-802