An alternative approach to orthogonal graph theoretical invariants

被引:7
作者
Araujo, O [1 ]
Morales, DA [1 ]
机构
[1] UNIV LOS ANDES,FAC CIENCIAS,DEPT QUIM,MERIDA 5101,VENEZUELA
关键词
D O I
10.1016/0009-2614(96)00545-3
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this work we show that the underlying structure of some graph theoretical invariants used to describe molecular structure, is the vector space Q(root 2, root 3) over the field Q of the rational numbers. On Q(root 2, root 3) we define a symmetric bilinear form and then proceed to use the Gram-Schmidt orthogonalization process. In this way we formalize Randic's idea of orthogonalizing molecular descriptors which is based on residuals of stepwise multiple regression analysis, since the results presented here make it possible to obtain a basis of graph theoretical invariants.
引用
收藏
页码:393 / 396
页数:4
相关论文
共 11 条
[1]  
[Anonymous], 1983, CHEM GRAPH THEORY
[2]  
[Anonymous], 1971, LINEAR ALGEBRA
[3]  
Kier L. H., 1976, Molecular Connectivity in Chemistry and Drug Research
[4]   MOLECULAR CONNECTIVITY .5. CONNECTIVITY SERIES CONCEPT APPLIED TO DENSITY [J].
KIER, LB ;
MURRAY, WJ ;
RANDIC, M ;
HALL, LH .
JOURNAL OF PHARMACEUTICAL SCIENCES, 1976, 65 (08) :1226-1230
[5]  
MORALES DA, IN PRESS
[6]  
RANDIC M, 1991, CROAT CHEM ACTA, V64, P43
[7]  
RANDIC M, 1991, NEW J CHEM, V15, P517
[8]   GENERALIZED MOLECULAR DESCRIPTORS [J].
RANDIC, M .
JOURNAL OF MATHEMATICAL CHEMISTRY, 1991, 7 (1-4) :155-168
[9]  
RANDIC M, 1991, J MOL STRUC-THEOCHEM, V233, P45, DOI DOI 10.1016/0166-1280(91)85053-A
[10]  
Stewart I., 1989, Galois Theory