Deep-Subwavelength Plasmonic Nanoresonators Exploiting Extreme Coupling

被引:63
作者
Alaee, Rasoul [1 ]
Menzel, Christoph [2 ]
Huebner, Uwe [3 ]
Pshenay-Severin, Ekaterina [2 ]
Bin Hasan, Shakeeb [1 ]
Pertsch, Thomas [2 ]
Rockstuhl, Carsten [1 ]
Lederer, Falk [1 ]
机构
[1] Univ Jena, Abbe Ctr Photon, Inst Condensed Matter Theory & Solid State Opt, D-07743 Jena, Germany
[2] Univ Jena, Abbe Ctr Photon, Inst Appl Phys, D-07743 Jena, Germany
[3] Inst Photon Technol IPHT, D-07702 Jena, Germany
关键词
Nanoresonators; plasmonics; perfect absorbers; extreme coupling; deep-subwavelength metal-insulator-metal (MIM); atomic layer deposition; QUANTUM; NANOPARTICLE; ABSORPTION; ABSORBERS; SURFACES; ANTENNAS;
D O I
10.1021/nl4007694
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A metal-insulator-metal (MIM) waveguide is a canonical structure used in many functional plasmonic devices. Recently, research on nanoresonantors made from finite, that is, truncated, MINI waveguides attracted a considerable deal of interest motivated by the promise for many applications. However, most suggested nanoresonators do not reach a deep-subwavelength domain. With ordinary fabrication techniques the dielectric spacers usually remain fairly thick, that is, in the order of tens of nanometers. This prevents the wavevector of the guided surface plasmon polariton to strongly deviate from the light line. Here, we will show that the exploitation of an extreme coupling regime, which appears for only a few nanometers thick dielectric spacer, can lift this limitation. By taking advantage of atomic layer deposition we fabricated and characterized exemplarily deep-subwavelength perfect absorbers. Our results are fully supported by numerical simulations and analytical considerations. Our work provides impetus on many fields of nanoscience and will foster various applications in high-impact areas such as metamaterials, light harvesting, and sensing or the fabrication of quantum-plasmonic devices.
引用
收藏
页码:3482 / 3486
页数:5
相关论文
共 39 条
[1]   Perfect absorbers on curved surfaces and their potential applications [J].
Alaee, Rasoul ;
Menzel, Christoph ;
Rockstuhl, Carsten ;
Lederer, Falk .
OPTICS EXPRESS, 2012, 20 (16) :18370-18376
[2]   Observation of strong coupling between one atom and a monolithic microresonator [J].
Aoki, Takao ;
Dayan, Barak ;
Wilcut, E. ;
Bowen, W. P. ;
Parkins, A. S. ;
Kippenberg, T. J. ;
Vahala, K. J. ;
Kimble, H. J. .
NATURE, 2006, 443 (7112) :671-674
[3]  
Atwater HA, 2010, NAT MATER, V9, P205, DOI [10.1038/nmat2629, 10.1038/NMAT2629]
[4]   Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers [J].
Aydin, Koray ;
Ferry, Vivian E. ;
Briggs, Ryan M. ;
Atwater, Harry A. .
NATURE COMMUNICATIONS, 2011, 2
[5]   Relating localized nanoparticle resonances to an associated antenna problem [J].
Bin Hasan, Shakeeb ;
Filter, Robert ;
Ahmed, Aftab ;
Vogelgesang, Ralf ;
Gordon, Reuven ;
Rockstuhl, Carsten ;
Lederer, Falk .
PHYSICAL REVIEW B, 2011, 84 (19)
[6]   General properties of slow-plasmon resonant nanostructures: nano-antennas and resonators [J].
Bozhevolnyi, Sergey I. ;
Sondergaard, Thomas .
OPTICS EXPRESS, 2007, 15 (17) :10869-10877
[7]   Mapping the plasmon resonances of metallic nanoantennas [J].
Bryant, Garnett W. ;
De Abajo, F. Javier Garcia ;
Aizpurua, Javier .
NANO LETTERS, 2008, 8 (02) :631-636
[8]   Resonant-cavity enhanced thermal emission [J].
Celanovic, I ;
Perreault, D ;
Kassakian, J .
PHYSICAL REVIEW B, 2005, 72 (07)
[9]  
Chandran A., 2012, NANO LETT, V85
[10]   Silver nanowires as surface plasmon resonators [J].
Ditlbacher, H ;
Hohenau, A ;
Wagner, D ;
Kreibig, U ;
Rogers, M ;
Hofer, F ;
Aussenegg, FR ;
Krenn, JR .
PHYSICAL REVIEW LETTERS, 2005, 95 (25)