Computational materials design of crystalline solids

被引:110
作者
Butler, Keith T. [1 ,2 ]
Frost, Jarvist M. [1 ,2 ]
Skelton, Jonathan M. [1 ,2 ]
Svane, Katrine L. [1 ,2 ]
Walsh, Aron [1 ,2 ,3 ,4 ]
机构
[1] Univ Bath, Ctr Sustainable Chem Technol, Bath BA2 7AY, Avon, England
[2] Univ Bath, Dept Chem, Bath BA2 7AY, Avon, England
[3] Yonsei Univ, Global E3 Inst, Seoul, South Korea
[4] Yonsei Univ, Dept Mat Sci & Engn, Seoul, South Korea
基金
英国工程与自然科学研究理事会;
关键词
STRUCTURE PREDICTION; POTENTIALS; PRINCIPLES;
D O I
10.1039/c5cs00841g
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The modelling of materials properties and processes from first principles is becoming sufficiently accurate as to facilitate the design and testing of new systems in silico. Computational materials science is both valuable and increasingly necessary for developing novel functional materials and composites that meet the requirements of next-generation technology. A range of simulation techniques are being developed and applied to problems related to materials for energy generation, storage and conversion including solar cells, nuclear reactors, batteries, fuel cells, and catalytic systems. Such techniques may combine crystal-structure prediction (global optimisation), data mining (materials informatics) and high- throughput screening with elements of machine learning. We explore the development process associated with computational materials design, from setting the requirements and descriptors to the development and testing of new materials. As a case study, we critically review progress in the fields of thermoelectrics and photovoltaics, including the simulation of lattice thermal conductivity and the search for Pb-free hybrid halide perovskites. Finally, a number of universal chemical-design principles are advanced.
引用
收藏
页码:6138 / 6146
页数:9
相关论文
共 55 条
  • [1] Multi-objective optimization in material design and selection
    Ashby, MF
    [J]. ACTA MATERIALIA, 2000, 48 (01) : 359 - 369
  • [2] Towards an exact description of electronic wavefunctions in real solids
    Booth, George H.
    Grueneis, Andreas
    Kresse, Georg
    Alavi, Ali
    [J]. NATURE, 2013, 493 (7432) : 365 - 370
  • [3] Identifying defect-tolerant semiconductors with high minority-carrier lifetimes: beyond hybrid lead halide perovskites
    Brandt, Riley E.
    Stevanovic, Vladan
    Ginley, David S.
    Buonassisi, Tonio
    [J]. MRS COMMUNICATIONS, 2015, 5 (02) : 265 - 275
  • [4] Structural and electronic properties of hybrid perovskites for high-efficiency thin-film photovoltaics from first-principles
    Brivio, Federico
    Walker, Alison B.
    Walsh, Aron
    [J]. APL MATERIALS, 2013, 1 (04):
  • [5] Polymorph Engineering of TiO2: Demonstrating How Absolute Reference Potentials Are Determined by Local Coordination
    Buckeridge, John
    Butler, Keith T.
    Catlow, C. Richard A.
    Logsdail, Andrew J.
    Scanlon, David O.
    Shevlin, Stephen A.
    Woodley, Scott M.
    Sokol, Alexey A.
    Walsh, Aron
    [J]. CHEMISTRY OF MATERIALS, 2015, 27 (11) : 3844 - 3851
  • [6] Ferroelectric materials for solar energy conversion: photoferroics revisited
    Butler, Keith T.
    Frost, Jarvist M.
    Walsh, Aron
    [J]. ENERGY & ENVIRONMENTAL SCIENCE, 2015, 8 (03) : 838 - 848
  • [7] PREDICTION OF FLATBAND POTENTIALS AT SEMICONDUCTOR-ELECTROLYTE INTERFACES FROM ATOMIC ELECTRONEGATIVITIES
    BUTLER, MA
    GINLEY, DS
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1978, 125 (02) : 228 - 232
  • [8] Bandgap calculations and trends of organometal halide perovskites
    Castelli, Ivano E.
    Garcia-Lastra, Juan Maria
    Thygesen, Kristian S.
    Jacobsen, Karsten W.
    [J]. APL MATERIALS, 2014, 2 (08):
  • [9] New cubic perovskites for one- and two-photon water splitting using the computational materials repository
    Castelli, Ivano E.
    Landis, David D.
    Thygesen, Kristian S.
    Dahl, Soren
    Chorkendorff, Ib
    Jaramillo, Thomas F.
    Jacobsen, Karsten W.
    [J]. ENERGY & ENVIRONMENTAL SCIENCE, 2012, 5 (10) : 9034 - 9043
  • [10] Electronic structure and stability of quaternary chalcogenide semiconductors derived from cation cross-substitution of II-VI and I-III-VI2 compounds
    Chen, Shiyou
    Gong, X. G.
    Walsh, Aron
    Wei, Su-Huai
    [J]. PHYSICAL REVIEW B, 2009, 79 (16)