Combination antiangiogenic therapy and radiation in head and neck cancers

被引:104
作者
Hsu, Heng-Wei [1 ,3 ,5 ]
Wall, Nathan R. [3 ,4 ]
Hsueh, Chung-Tsen [6 ]
Kim, Seungwon [7 ]
Ferris, Robert L. [7 ]
Chen, Chien-Shing [2 ,5 ,6 ]
Mirshahidi, Saied [2 ,3 ,5 ]
机构
[1] Loma Linda Univ, Dept Pharmacol, Loma Linda, CA 92350 USA
[2] Loma Linda Univ, Dept Med, Loma Linda, CA 92350 USA
[3] Loma Linda Univ, Dept Basic Sci, Loma Linda, CA 92350 USA
[4] Loma Linda Univ, Dept Biochem, Loma Linda, CA 92350 USA
[5] Loma Linda Univ, LLU Canc Ctr, Biospecimen Lab, Loma Linda, CA 92350 USA
[6] Loma Linda Univ, Div Oncol & Hematol, Loma Linda, CA 92350 USA
[7] Univ Pittsburgh, Dept Otolaryngol, Pittsburgh, PA 15260 USA
关键词
Antiangiogenesis; VEGFR/PDGFR inhibitor; Radiation; DNA damage; Targeted therapy; Comibination therapy; Head and neck cancer; ENDOTHELIAL GROWTH-FACTOR; SQUAMOUS-CELL CARCINOMA; TYROSINE-KINASE INHIBITOR; PHASE-II-TRIAL; VASCULAR-TARGETING AGENTS; PROGNOSTIC-SIGNIFICANCE; TUMOR MICROENVIRONMENT; IONIZING-RADIATION; PLUS CETUXIMAB; BEVACIZUMAB;
D O I
10.1016/j.oraloncology.2013.10.003
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Tumor angiogenesis is a hallmark of advanced cancers and promotes invasion and metastasis. Over 90% of head and neck squamous cell carcinomas (HNSCC) express angiogenic factors such as vascular endothelial growth factor (VEGF). Several preclinical studies support the prognostic implications of angiogenic markers for HNSCC and currently this is an attractive treatment target in solid tumors. Since radiotherapy is one of the most commonly used treatments for HNSCC, it is imperative to identify the interactions between antiangiogenic therapy and radiotherapy, and to develop combination therapy to improve clinical outcome. The mechanisms between antiangiogenic agents and ionizing radiation are complicated and involve many interactions between the vasculature, tumor stroma and tumor cells. The proliferation and metastasis of tumor cells rely on angiogenesis/blood vessel formation. Rapid growing tumors will cause hypoxia, which up-regulates tumor cell survival factors, such as hypoxia-inducing factor-1 alpha (HIF-1 alpha) and vascular endothelial growth factor (VEGF), giving rise to more tumor proliferation, angiogenesis and increased radioresistance. Thus, agents that target tumor vasculature and new tumor vessel formation can modulate the tumor microenvironment to improve tumor blood flow and oxygenation, leading to enhanced radiosensitivity. In this review, we discuss the mechanisms of how antiangiogenic therapies improve tumor response to radiation and data that support this combination strategy as a promising method for the treatment of HNSCC in the future. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:19 / 26
页数:8
相关论文
共 98 条
[1]   Targeting lymphangiogenesis to prevent tumour metastasis [J].
Achen, M. G. ;
Mann, G. B. ;
Stacker, S. A. .
BRITISH JOURNAL OF CANCER, 2006, 94 (10) :1355-1360
[2]   Nuclear factor-κB-related serum factors as longitudinal biomarkers of response and survival in advanced oropharyngeal carcinoma [J].
Allen, Clint ;
Duffy, Sonia ;
Teknos, Theodoros ;
Islam, Mozaffarul ;
Chen, Zhong ;
Albert, Paul S. ;
Wolf, Gregory ;
Van Wales, Carter .
CLINICAL CANCER RESEARCH, 2007, 13 (11) :3182-3190
[3]   Cetuximab and bevacizumab: preclinical data and phase II trial in recurrent or metastatic squamous cell carcinoma of the head and neck [J].
Argiris, A. ;
Kotsakis, A. P. ;
Hoang, T. ;
Worden, F. P. ;
Savvides, P. ;
Gibson, M. K. ;
Gyanchandani, R. ;
Blumenschein, G. R., Jr. ;
Chen, H. X. ;
Grandis, J. R. ;
Harari, P. M. ;
Kies, M. S. ;
Kim, S. .
ANNALS OF ONCOLOGY, 2013, 24 (01) :220-225
[4]   AZD2171, a pan-VEGF receptor tyrosine kinase inhibitor, normalizes tumor vasculature and alleviates edema in glioblastoma patients [J].
Batchelor, Tracy T. ;
Sorensen, A. Gregory ;
di Tomaso, Emmanuelle ;
Zhang, Wei-Ting ;
Duda, Dan G. ;
Cohen, Kenneth S. ;
Kozak, Kevin R. ;
Cahill, Daniel P. ;
Chen, Poe-Jou ;
Zhu, Mingwang ;
Ancukiewicz, Marek ;
Mrugala, Maciej M. ;
Plotkin, Scott ;
Drappatz, Jan ;
Louis, David N. ;
Ivy, Percy ;
Scadden, David T. ;
Benner, Thomas ;
Loeffler, Jay S. ;
Wen, Patrick Y. ;
Jain, Rakesh K. .
CANCER CELL, 2007, 11 (01) :83-95
[5]   Radiotherapy plus cetuximab for squamous-cell carcinoma of the head and neck [J].
Bonner, JA ;
Harari, PM ;
Giralt, J ;
Azarnia, N ;
Shin, DM ;
Cohen, RB ;
Jones, CU ;
Sur, R ;
Raben, D ;
Jassem, J ;
Ove, R ;
Kies, MS ;
Baselga, J ;
Youssoufian, H ;
Amellal, N ;
Rowinsky, EK ;
Ang, KK .
NEW ENGLAND JOURNAL OF MEDICINE, 2006, 354 (06) :567-578
[6]   Radiotherapy plus cetuximab for locoregionally advanced head and neck cancer: 5-year survival data from a phase 3 randomised trial, and relation between cetuximab-induced rash and survival [J].
Bonner, James A. ;
Harari, Paul M. ;
Giralt, Jordi ;
Cohen, Roger B. ;
Jones, Christopher U. ;
Sur, Ranjan K. ;
Raben, David ;
Baselga, Jose ;
Spencer, Sharon A. ;
Zhu, Junming ;
Youssoufian, Hagop ;
Rowinsky, Eric K. ;
Ang, K. Kian .
LANCET ONCOLOGY, 2010, 11 (01) :21-28
[7]   The relative role of ErbB1-4 receptor tyrosine kinases in radiation signal transduction responses of human carcinoma cells [J].
Bowers, G ;
Reardon, D ;
Hewitt, T ;
Dent, P ;
Mikkelsen, RB ;
Valerie, K ;
Lammering, G ;
Amir, C ;
Schmidt-Ullrich, RK .
ONCOGENE, 2001, 20 (11) :1388-1397
[8]   Combined effects of bevacizumab with erlotinib and irradiation: a preclinical study on a head and neck cancer orthotopic model [J].
Bozec, A. ;
Sudaka, A. ;
Fischel, J-L ;
Brunstein, M-C ;
Etienne-Grimaldi, M-C ;
Milano, G. .
BRITISH JOURNAL OF CANCER, 2008, 99 (01) :93-99
[9]   Combination of sunitinib, cetuximab and irradiation in an orthotopic head and neck cancer model [J].
Bozec, A. ;
Sudaka, A. ;
Toussan, N. ;
Fischel, J.-L. ;
Etienne-Grimaldi, M.-C. ;
Milano, G. .
ANNALS OF ONCOLOGY, 2009, 20 (10) :1703-1707
[10]  
Brieger J, 2007, ONCOL REP, V18, P1597