Nanoscale Interface Modification of LiCoO2 by Al2O3 Atomic Layer Deposition for Solid-State Li Batteries

被引:186
作者
Woo, Jae Ha [1 ]
Trevey, James E. [1 ]
Cavanagh, Andrew S. [2 ]
Choi, Yong Seok [3 ]
Kim, Seul Cham [3 ]
George, Steven M. [4 ]
Oh, Kyu Hwan [3 ]
Lee, Se-Hee [1 ]
机构
[1] Univ Colorado, Dept Mech Engn, Boulder, CO 80309 USA
[2] Univ Colorado, Dept Phys, Boulder, CO 80309 USA
[3] Seoul Natl Univ, Dept Mat Sci & Engn, Seoul 151742, South Korea
[4] Univ Colorado, Dept Chem & Biol Engn, Dept Chem & Biochem, Boulder, CO 80309 USA
关键词
LITHIUM SECONDARY BATTERIES; ELECTROCHEMICAL PERFORMANCE; ION BATTERIES; ELECTRODE; CATHODES; STABILITY; FILMS;
D O I
10.1149/2.085207jes
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Cycle stability of solid-state lithium batteries (SSLBs) using a LiCoO2 cathode is improved by atomic layer deposition (ALD) on active material powder with Al2O3. SSLBs with LiCoO2/Li3.15Ge0.15P0.85S4/77.5Li(2)S-22.5P(2)S(5)/Li structure were constructed and tested by charge-discharge cycling at a current density of 45 mu A cm(-2) with a voltage window of 3.3 similar to 4.3 V (vs. Li/Li+). Capacity degradation during cycling is suppressed dramatically by employing Al2O3 ALD-coated LiCoO2 in the composite cathode. Whereas only 70% of capacity retention is achieved for uncoated LiCoO2 after 25 cycles, 90% of capacity retention is observed for LiCoO2 with ALD Al2O3 layers. Electrochemical impedance spectroscopy (EIS) and transmission electron microscopy (TEM) studies show that the presence of ALD Al2O3 layers on the surface of LiCoO2 reduces interfacial resistance development between LiCoO2 and solid state electrolyte (SSE) during cycling. (C) 2012 The Electrochemical Society. [DOI: 10.1149/2.085207jes] All rights reserved.
引用
收藏
页码:A1120 / A1124
页数:5
相关论文
共 20 条
[1]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[2]   Ceramic and polymeric solid electrolytes for lithium-ion batteries [J].
Fergus, Jeffrey W. .
JOURNAL OF POWER SOURCES, 2010, 195 (15) :4554-4569
[3]   Electrical characterization of thin Al2O3 films grown by atomic layer deposition on silicon and various metal substrates [J].
Groner, MD ;
Elam, JW ;
Fabreguette, FH ;
George, SM .
THIN SOLID FILMS, 2002, 413 (1-2) :186-197
[4]   Low-temperature Al2O3 atomic layer deposition [J].
Groner, MD ;
Fabreguette, FH ;
Elam, JW ;
George, SM .
CHEMISTRY OF MATERIALS, 2004, 16 (04) :639-645
[5]   Enhanced Stability of LiCoO2 Cathodes in Lithium-Ion Batteries Using Surface Modification by Atomic Layer Deposition [J].
Jung, Yoon Seok ;
Cavanagh, Andrew S. ;
Dillon, Anne C. ;
Groner, Markus D. ;
George, Steven M. ;
Lee, Se-Hee .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2010, 157 (01) :A75-A81
[6]   Electrochemical stability of thin-film LiCoO2 cathodes by aluminum-oxide coating [J].
Kim, YJ ;
Kim, H ;
Kim, B ;
Ahn, D ;
Lee, JG ;
Kim, TJ ;
Son, D ;
Cho, J ;
Kim, YW ;
Park, B .
CHEMISTRY OF MATERIALS, 2003, 15 (07) :1505-1511
[7]   The effect of Al2O3 coating on the cycle life performance in thin-film LiCoO2 cathodes [J].
Kim, YJ ;
Kim, TJ ;
Shin, JW ;
Park, B ;
Cho, JP .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2002, 149 (10) :A1337-A1341
[8]   All-solid-state lithium secondary batteries using a layer-structured LiNi0.5Mn0.5O2 cathode material [J].
Mizuno, F ;
Hayashi, A ;
Tadanaga, K ;
Minami, T ;
Tatsumisago, M .
JOURNAL OF POWER SOURCES, 2003, 124 (01) :170-173
[9]   Effect of Al2O3 coating on electrochemical performance of LiCoO2 as cathode materials for secondary lithium batteries [J].
Oh, S ;
Lee, JK ;
Byun, D ;
Cho, WI ;
Cho, BW .
JOURNAL OF POWER SOURCES, 2004, 132 (1-2) :249-255
[10]   Enhancement of the high-rate capability of solid-state lithium batteries by nanoscale interfacial modification [J].
Ohta, Narumi ;
Takada, Kazunori ;
Zhang, Lianqi ;
Ma, Renzhi ;
Osada, Minoru ;
Sasaki, Takayoshi .
ADVANCED MATERIALS, 2006, 18 (17) :2226-+