Strand-specific community RNA-seq reveals prevalent and dynamic antisense transcription in human gut microbiota

被引:18
作者
Bao, Guanhui [1 ]
Wang, Mingjie [1 ]
Doak, Thomas G. [2 ,3 ]
Ye, Yuzhen [1 ]
机构
[1] Indiana Univ, Sch Informat & Comp, Bloomington, IN 47405 USA
[2] Indiana Univ, Dept Biol, Bloomington, IN 47405 USA
[3] Indiana Univ, Natl Ctr Genome Anal Support, Bloomington, IN 47405 USA
来源
FRONTIERS IN MICROBIOLOGY | 2015年 / 6卷
基金
美国国家科学基金会;
关键词
metatranscriptome; metagenome; antisense RNA; human gut microbiota; transposases; SEQUENCE; QUANTIFICATION; WIDESPREAD;
D O I
10.3389/fmicb.2015.00896
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Metagenomics and other meta-omics approaches (including metatranscriptomics) provide insights into the composition and function of microbial communities living in different environments or animal hosts. Metatranscriptomics research provides an unprecedented opportunity to examine gene regulation for many microbial species simultaneously, and more importantly, for the majority that are unculturable microbial species, in their natural environments (or hosts). Current analyses of metatranscriptomic datasets focus on the detection of gene expression levels and the study of the relationship between changes of gene expression and changes of environment. As a demonstration of utilizing metatranscriptomics beyond these common analyses, we developed a computational and statistical procedure to analyze the antisense transcripts in strand-specific metatranscriptomic datasets. Antisense RNAs encoded on the DNA strand opposite a gene's CDS have the potential to form extensive base-pairing interactions with the corresponding sense RNA, and can have important regulatory functions. Most studies of antisense RNAs in bacteria are rather recent, are mostly based on transcriptome analysis, and have been applied mainly to single bacterial species. Application of our approaches to human gut-associated metatranscriptomic datasets allowed us to survey antisense transcription for a large number of bacterial species associated with human beings. The ratio of protein coding genes with antisense transcription ranges from 0 to 35.8% (median = 10.0%) among 47 species. Our results show that antisense transcription is dynamic, varying between human individuals. Functional enrichment analysis revealed a preference of certain gene functions for antisense transcription, and transposase genes are among the most prominent ones (but we also observed antisense transcription in bacterial house-keeping genes).
引用
收藏
页数:12
相关论文
共 39 条
[1]   Cartography of Methicillin-Resistant S. aureus Transcripts: Detection, Orientation and Temporal Expression during Growth Phase and Stress Conditions [J].
Beaume, Marie ;
Hernandez, David ;
Farinelli, Laurent ;
Deluen, Cecile ;
Linder, Patrick ;
Gaspin, Christine ;
Romby, Pascale ;
Schrenzel, Jacques ;
Francois, Patrice .
PLOS ONE, 2010, 5 (05)
[2]   Ultra Deep Sequencing of Listeria monocytogenes sRNA Transcriptome Revealed New Antisense RNAs [J].
Behrens, Sebastian ;
Widder, Stefanie ;
Mannala, Gopala Krishna ;
Qing, Xiaoxing ;
Madhugiri, Ramakanth ;
Kefer, Nathalie ;
Abu Mraheil, Mobarak ;
Rattei, Thomas ;
Hain, Torsten .
PLOS ONE, 2014, 9 (02)
[3]   Antisense transcription: A critical look in both directions [J].
Beiter, T. ;
Reich, E. ;
Williams, R. W. ;
Simon, P. .
CELLULAR AND MOLECULAR LIFE SCIENCES, 2009, 66 (01) :94-112
[4]   Pervasive transcription constitutes a new level of eukaryotic genome regulation [J].
Berretta, Julia ;
Morillon, Antonin .
EMBO REPORTS, 2009, 10 (09) :973-982
[5]   Trimmomatic: a flexible trimmer for Illumina sequence data [J].
Bolger, Anthony M. ;
Lohse, Marc ;
Usadel, Bjoern .
BIOINFORMATICS, 2014, 30 (15) :2114-2120
[6]   Regulatory mechanisms employed by cis-encoded antisense RNAs [J].
Brantl, Sabine .
CURRENT OPINION IN MICROBIOLOGY, 2007, 10 (02) :102-109
[7]   The transcriptional response of microbial communities in thawing Alaskan permafrost soils [J].
Coolen, Marco J. L. ;
Orsi, William D. .
FRONTIERS IN MICROBIOLOGY, 2015, 6
[8]   Comparative metatranscriptomics reveals widespread community responses during phenanthrene degradation in soil [J].
de Menezes, Alexandre ;
Clipson, Nicholas ;
Doyle, Evelyn .
ENVIRONMENTAL MICROBIOLOGY, 2012, 14 (09) :2577-2588
[9]   Widespread Antisense Transcription in Escherichia coli [J].
Dornenburg, James E. ;
DeVita, Anne M. ;
Palumbo, Michael J. ;
Wade, Joseph T. .
MBIO, 2010, 1 (01)
[10]   Relating the metatranscriptome and metagenome of the human gut [J].
Franzosa, Eric A. ;
Morgan, Xochitl C. ;
Segata, Nicola ;
Waldron, Levi ;
Reyes, Joshua ;
Earl, Ashlee M. ;
Giannoukos, Georgia ;
Boylan, Matthew R. ;
Ciulla, Dawn ;
Gevers, Dirk ;
Izard, Jacques ;
Garrett, Wendy S. ;
Chan, Andrew T. ;
Huttenhower, Curtis .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2014, 111 (22) :E2329-E2338