Inverse scattering of a planar crack in 3D acoustics: closed form solution for a bounded body

被引:12
作者
Bui, HD [1 ]
Constantinescu, A
Maigre, H
机构
[1] Ecole Polytech, UMR CNES 7649, Mecan Solides Lab, F-91128 Palaiseau, France
[2] Elect France, F-92141 Clamart, France
来源
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE II FASCICULE B-MECANIQUE PHYSIQUE ASTRONOMIE | 1999年 / 327卷 / 10期
关键词
scattering; planar crack; inverse problem;
D O I
10.1016/S1287-4620(00)87006-4
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We consider the inverse problem of identifying a planar crack in 3D acoustics, using arbitrary transient inputs applied to the boundary of the solid. We show that overdetermined boundary data, input excitation and output allow the explicit reconstruction of the crack plane and the crack geometry. This explicit solution proves that for bounded solids, overdetermined boundary data suffice to identify planar cracks. (C) 1999 Academie des sciences/Editions scientifiques et medicales Elsevier SAS.
引用
收藏
页码:971 / 976
页数:6
相关论文
共 9 条
[1]  
ALESSANDRINI G, 1994, QUAD 7AT 1
[2]   On inverse scattering by screens [J].
Alves, CJS ;
Tuong, HD .
INVERSE PROBLEMS, 1997, 13 (05) :1161-1176
[3]   Inverse scattering for elastic plane cracks [J].
Alves, CJS ;
Ha-Duong, T .
INVERSE PROBLEMS, 1999, 15 (01) :91-97
[4]   On the identification of planar cracks in elasticity via reciprocity gap concept [J].
Andrieux, S ;
BenAbda, A ;
Bui, HD .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1997, 324 (12) :1431-1438
[5]   Reciprocity principle and crack identification [J].
Andrieux, S ;
Ben Abda, A ;
Bui, HD .
INVERSE PROBLEMS, 1999, 15 (01) :59-65
[6]  
[Anonymous], 1978, THEORIE DISTRIBUTION
[7]  
Calderon A.P., 1980, Seminar on Numerical Analysis and its Applications to Continuum Physics, Rio de Janeiro, 1980, P65, DOI DOI 10.1590/S0101-82052006000200002
[8]  
HADUONG T, 1997, Z ANGEW MATH MECH, V6, P261
[9]  
LIONS JL, 1986, CR ACAD SCI I-MATH, V302, P471