First-principles kinetic Monte Carlo simulations for heterogeneous catalysis:: Application to the CO oxidation at RuO2(110) -: art. no. 045433

被引:282
作者
Reuter, K [1 ]
Scheffler, M [1 ]
机构
[1] Max Planck Gesell, Fritz Haber Inst, D-14195 Berlin, Germany
关键词
D O I
10.1103/PhysRevB.73.045433
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We describe a first-principles statistical mechanics approach enabling us to simulate the steady-state situation of heterogeneous catalysis. In a first step, density-functional theory together with transition-state theory is employed to obtain the energetics of the relevant elementary processes. Subsequently the statistical mechanics problem is solved by the kinetic Monte Carlo method, which accounts for the correlations, fluctuations, and spatial distributions of the chemicals at the surface of the catalyst under steady-state conditions. Applying this approach to the catalytic oxidation of CO at RuO2(110), we determine the surface atomic structure and composition in reactive environments ranging from ultra-high vacuum (UHV) to technologically relevant conditions, i.e., up to pressures of several atmospheres and elevated temperatures. We also compute the CO2 formation rates (turnover frequencies). The results are in quantitative agreement with all existing experimental data. We find that the high catalytic activity of this system is intimately connected with a disordered, dynamic surface "phase" with significant compositional fluctuations. In this active state the catalytic function results from a self-regulating interplay of several elementary processes.
引用
收藏
页数:17
相关论文
共 60 条
[1]   On the nature of the active state of supported ruthenium catalysts used for the oxidation of carbon monoxide:: Steady-state and transient kinetics combined with in situ infrared spectroscopy [J].
Assmann, J ;
Narkhede, V ;
Khodeir, L ;
Löffler, E ;
Hinrichsen, O ;
Birkner, A ;
Over, H ;
Muhler, M .
JOURNAL OF PHYSICAL CHEMISTRY B, 2004, 108 (38) :14634-14642
[2]   Dissociation of O2 at Al(111):: The role of spin selection rules -: art. no. 036104 [J].
Behler, J ;
Delley, B ;
Lorenz, S ;
Reuter, K ;
Scheffler, M .
PHYSICAL REVIEW LETTERS, 2005, 94 (03)
[3]  
BLAHA P, 1999, WIEN97 FULL POTENTIA
[4]   NEW ALGORITHM FOR MONTE-CARLO SIMULATION OF ISING SPIN SYSTEMS [J].
BORTZ, AB ;
KALOS, MH ;
LEBOWITZ, JL .
JOURNAL OF COMPUTATIONAL PHYSICS, 1975, 17 (01) :10-18
[5]   CO oxidation reaction over oxygen-rich Ru(0001) surfaces [J].
Böttcher, A ;
Niehus, H ;
Schwegmann, S ;
Over, H ;
Ertl, G .
JOURNAL OF PHYSICAL CHEMISTRY B, 1997, 101 (51) :11185-11191
[6]   Oxygen adsorbed on oxidized Ru(0001) [J].
Böttcher, A ;
Niehus, H .
PHYSICAL REVIEW B, 1999, 60 (20) :14396-14404
[7]  
Boudart M., 1968, KINETICS CHEM PROCES
[8]   Chemistry - Towards tomorrow's catalysts [J].
Campbell, CT .
NATURE, 2004, 432 (7015) :282-283
[9]   Finding the rate-determining step in a mechanism - Comparing DeDonder relations with the "degree of rate control" [J].
Campbell, CT .
JOURNAL OF CATALYSIS, 2001, 204 (02) :520-524
[10]   STEADY-STATE OXIDATION OF CARBON-MONOXIDE OVER SUPPORTED NOBLE-METALS WITH PARTICULAR REFERENCE TO PLATINUM [J].
CANT, NW ;
HICKS, PC ;
LENNON, BS .
JOURNAL OF CATALYSIS, 1978, 54 (03) :372-383