Determining the optimal configuration for the zone routing protocol

被引:193
作者
Pearlman, MR [1 ]
Haas, ZJ [1 ]
机构
[1] Cornell Univ, Sch Elect Engn, Wireless Network Lab, Ithaca, NY 14853 USA
关键词
ad hoc network; bordercast; hybrid routing; proactive routing; reactive routing; routing protocol; routing zone; zone routing protocol (ZRP);
D O I
10.1109/49.779922
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The zone routing protocol (ZRP) is a hybrid routing protocol that proactively maintains routes within a local region of the network (which we refer to as the routing zone). Knowledge of this routing zone topology is leveraged by the ZRP to improve the efficiency of a reactive route query/reply mechanism, The ZRP can be configured for a particular network through adjustment of a single parameter, the routing zone radius. In this paper, we address the issue of configuring the ZRP to provide the best performance for a particular network at any time. Previous work has demonstrated that an optimally configured ZRP operates at least as efficiently as traditional reactive flood-search or proactive distance vector/link state routing protocols (and in many cases, much more efficiently), Adaptation of the ZRP to changing network conditions requires both an understanding of how the ZRP reacts to changes in network behavior and a mechanism to allow individual nodes to identify these changes given only limited knowledge of the network behavior. In the first half of this paper, we demonstrate the effects of relative node velocity, node density, network span, and user data activity on the performance of the ZRP, We then introduce two different schemes ("min searching" and "traffic adaptive") that allow individual nodes to identify and appropriately react to changes in network configuration, based only on information derived from the amount of received ZRP traffic. Through test-bed simulation, we demonstrate that these radius estimation techniques can allow the ZRP to operate within 2% of the control traffic resulting-from perfect radius estimation.
引用
收藏
页码:1395 / 1414
页数:20
相关论文
共 16 条
[1]  
[Anonymous], P C COMM ARCH PROT A
[2]  
[Anonymous], WIRELESS PERSONAL CO
[3]  
Bertsekas D. P., 1992, DATA NETWORKS
[4]  
HAAS ZJ, P SIGCOMM 98, P167
[5]  
HAAS ZJ, 1998, VIRG TECHS 8 S WIR P, P156
[6]  
HAAS ZJ, 1998, OPTIMIZED LINK STATE
[7]  
HAAS ZJ, 1915, P ICC 98
[8]  
JOHNSON D, 1996, MOBILE COMPUTING
[9]  
Moy J., 1997, RFC 2178
[10]  
Murthy S, 1996, MOBILE NETW APPL, V1, P183, DOI DOI 10.1007/BF01193336