Autozygosity Mapping with Exome Sequence Data

被引:51
作者
Carr, Ian M. [1 ]
Bhaskar, Sanjeev [2 ,3 ]
Sullivan, James O' [2 ,3 ]
Aldahmesh, Mohammed A. [4 ]
Shamseldin, Hanan E. [4 ]
Markham, Alexander F. [1 ]
Bonthron, David T. [1 ]
Black, Graeme [2 ,3 ]
Alkuraya, Fowzan S. [4 ,5 ,6 ,7 ]
机构
[1] Univ Leeds, Sch Med, Leeds LS2 9JT, W Yorkshire, England
[2] Univ Manchester, Manchester Biomed Res Ctr, Manchester Acad Hlth Sci Ctr, Genet Med Res Grp, Manchester, Lancs, England
[3] St Marys Hosp, Cent Manchester Fdn, Manchester M13 0JH, Lancs, England
[4] King Faisal Specialist Hosp & Res Ctr, Dev Genet Unit, Riyadh 11211, Saudi Arabia
[5] Alfaisal Univ, Coll Med, Dept Anat & Cell Biol, Riyadh, Saudi Arabia
[6] King Saud Univ, Dept Pediat, King Khalid Univ Hosp, Riyadh, Saudi Arabia
[7] King Saud Univ, Coll Med, Riyadh 11461, Saudi Arabia
基金
英国工程与自然科学研究理事会;
关键词
exome sequencing; autozygosity mapping; software; bioinformatics; IDENTIFICATION;
D O I
10.1002/humu.22220
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Autozygosity mapping is a powerful method for the identification of recessively inherited disease genes using small inbred families. Typically, microarray SNP genotype data are first used to identify autozygous regions as extended runs of homozygous genotypes. Next, candidate disease loci are found by defining regions that are autozygous in all affected patients. Finally, the disease gene is identified by sequencing the genes within the candidate disease loci. However, with the advent of massively parallel sequencing, it is now possible to sample or to completely sequence an individual's genome, or, more commonly, exome. This opens up the possibility of concurrently defining autozygous regions and identifying possibly deleterious sequence variants, using data from a single sequencing experiment. Consequently, we have developed a set of computer programs that identify autozygous regions using exome sequence data. These programs derive their genotyping data either by the ab initio detection of all sequence variants or by the assessment of 0.53 million known polymorphic positions within each exome dataset. Using genotype data derived solely from exome sequence data, it was possible to identify the majority of autozygous regions found by microarray SNP genotype data. Hum Mutat 34:50-56, 2013. (C) 2012 Wiley Periodicals, Inc.
引用
收藏
页码:50 / 56
页数:7
相关论文
共 11 条
[1]   Identification of a Truncation Mutation of Acylglycerol Kinase (AGK) Gene in a Novel Autosomal Recessive Cataract Locus [J].
Aldahmesh, Mohammed A. ;
Khan, Arif O. ;
Mohamed, Jawahir Y. ;
Alghamdi, Mohammed H. ;
Alkuraya, Fowzan S. .
HUMAN MUTATION, 2012, 33 (06) :960-962
[2]   A map of human genome variation from population-scale sequencing [J].
Altshuler, David ;
Durbin, Richard M. ;
Abecasis, Goncalo R. ;
Bentley, David R. ;
Chakravarti, Aravinda ;
Clark, Andrew G. ;
Collins, Francis S. ;
De la Vega, Francisco M. ;
Donnelly, Peter ;
Egholm, Michael ;
Flicek, Paul ;
Gabriel, Stacey B. ;
Gibbs, Richard A. ;
Knoppers, Bartha M. ;
Lander, Eric S. ;
Lehrach, Hans ;
Mardis, Elaine R. ;
McVean, Gil A. ;
Nickerson, DebbieA. ;
Peltonen, Leena ;
Schafer, Alan J. ;
Sherry, Stephen T. ;
Wang, Jun ;
Wilson, Richard K. ;
Gibbs, Richard A. ;
Deiros, David ;
Metzker, Mike ;
Muzny, Donna ;
Reid, Jeff ;
Wheeler, David ;
Wang, Jun ;
Li, Jingxiang ;
Jian, Min ;
Li, Guoqing ;
Li, Ruiqiang ;
Liang, Huiqing ;
Tian, Geng ;
Wang, Bo ;
Wang, Jian ;
Wang, Wei ;
Yang, Huanming ;
Zhang, Xiuqing ;
Zheng, Huisong ;
Lander, Eric S. ;
Altshuler, David L. ;
Ambrogio, Lauren ;
Bloom, Toby ;
Cibulskis, Kristian ;
Fennell, Tim J. ;
Gabriel, Stacey B. .
NATURE, 2010, 467 (7319) :1061-1073
[3]   Interactive visual analysis of SNP data for rapid autozygosity mapping in consanguineous families [J].
Carr, Ian M. ;
Flintoff, Kimberley J. ;
Taylor, Graham R. ;
Markham, Alexander F. ;
Bonthron, David T. .
HUMAN MUTATION, 2006, 27 (10) :1041-1046
[4]   IBDfinder and SNPsetter: Tools for Pedigree-Independent Identification of Autozygous Regions in Individuals with Recessive Inherited Disease [J].
Carr, Ian M. ;
Sheridan, Eamonn ;
Hayward, Bruce E. ;
Markham, Alexander F. ;
Bonthron, David T. .
HUMAN MUTATION, 2009, 30 (06) :960-967
[5]   Exome Sequencing Identifies CCDC8 Mutations in 3-M Syndrome, Suggesting that CCDC8 Contributes in a Pathway with CUL7 and OBSL1 to Control Human Growth [J].
Hanson, Dan ;
Murray, Philip G. ;
O'Sullivan, James ;
Urquhart, Jill ;
Daly, Sarah ;
Bhaskar, Sanjeev S. ;
Biesecker, Leslie G. ;
Skae, Mars ;
Smith, Claire ;
Cole, Trevor ;
Kirk, Jeremy ;
Chandler, Kate ;
Kingston, Helen ;
Donnai, Dian ;
Clayton, Peter E. ;
Black, Graeme C. M. .
AMERICAN JOURNAL OF HUMAN GENETICS, 2011, 89 (01) :148-153
[6]   HOMOZYGOSITY MAPPING - A WAY TO MAP HUMAN RECESSIVE TRAITS WITH THE DNA OF INBRED CHILDREN [J].
LANDER, ES ;
BOTSTEIN, D .
SCIENCE, 1987, 236 (4808) :1567-1570
[7]   Fast and accurate short read alignment with Burrows-Wheeler transform [J].
Li, Heng ;
Durbin, Richard .
BIOINFORMATICS, 2009, 25 (14) :1754-1760
[8]   AUTOZYGOSITY MAPPING, COMPLEX CONSANGUINITY, AND AUTOSOMAL RECESSIVE DISORDERS [J].
MUELLER, RF ;
BISHOP, DT .
JOURNAL OF MEDICAL GENETICS, 1993, 30 (09) :798-799
[9]   HomozygosityMapper2012-bridging the gap between homozygosity mapping and deep sequencing [J].
Seelow, Dominik ;
Schuelke, Markus .
NUCLEIC ACIDS RESEARCH, 2012, 40 (W1) :W516-W520
[10]   HomozygosityMapper-an interactive approach to homozygosity mapping [J].
Seelow, Dominik ;
Schuelke, Markus ;
Hildebrandt, Friedhelm ;
Nuernberg, Peter .
NUCLEIC ACIDS RESEARCH, 2009, 37 :W593-W599