Building treatments for urban flood inundation models and implications for predictive skill and modeling efficiency

被引:219
作者
Schubert, Jochen E.
Sanders, Brett F. [1 ]
机构
[1] Univ Calif Irvine, Dept Civil & Environm Engn, Irvine, CA 92697 USA
基金
美国国家科学基金会;
关键词
Dam break; Urban flood inundation modeling; Porosity; Mesh generation; Unstructured grid; Building outlines; SHALLOW-WATER MODEL; DAMAGE ESTIMATION; POROSITY; GENERATION; RIEMANN;
D O I
10.1016/j.advwatres.2012.02.012
中图分类号
TV21 [水资源调查与水利规划];
学科分类号
081501 ;
摘要
Urban areas are vulnerable to major flood damages due to the density of economic and social assets, and there is increasing interest in localized flood intensity predictions to implement flood risk reduction measures. A number of models have been proposed for unsteady flood flows through urban landscapes, but the data needs and complexity are varied and it is not clear that the benefits of added complexity are justified by improved predictive skill. In this study we compare four methods to model unsteady, multidimensional flow through urban areas: building resistance (BR), building block (BB), building hole (BH) and building porosity (BP). Each method is applied to the Baldwin Hills, CA urban dam break scenario which offers excellent data for model parameterization, validation and overall performance assessment including observations of flood extent, stream flow, and scour path. Results show that all four methods are capable of high predictive skill for flood extent and stream flow using unique unstructured meshes tailored to exploit the strengths of each approach. However, localized velocities prove more difficult to predict and are sensitive to the building method even in the limit of a very fine grid (ca. 1.5 m resolution). In addition, only those methods that account for building geometries (BB, BH and BP) capture building-scale variability in the velocity field. Tradeoffs between predictive skill, execution time, and set-up time are identified suggesting that the best method for a particular application will depend on available data, computing resources, time constraints, and the specific modeling objectives. (C) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:49 / 64
页数:16
相关论文
共 55 条
[1]   Flood risk analyses-how detailed do we need to be? [J].
Apel, H. ;
Aronica, G. T. ;
Kreibich, H. ;
Thieken, A. H. .
NATURAL HAZARDS, 2009, 49 (01) :79-98
[2]   Multilevel model for flood wave propagation in flood-affected areas [J].
Aronica, G ;
Tucciarelli, T ;
Nasello, C .
JOURNAL OF WATER RESOURCES PLANNING AND MANAGEMENT, 1998, 124 (04) :210-217
[3]   Drainage efficiency in urban areas: a case study [J].
Aronica, GT ;
Lanza, LG .
HYDROLOGICAL PROCESSES, 2005, 19 (05) :1105-1119
[4]   A simple raster-based model for flood inundation simulation [J].
Bates, PD ;
De Roo, APJ .
JOURNAL OF HYDROLOGY, 2000, 236 (1-2) :54-77
[5]   Unstructured grid finite-volume algorithm for shallow-water flow and scalar transport with wetting and drying [J].
Begnudelli, L ;
Sanders, BF .
JOURNAL OF HYDRAULIC ENGINEERING, 2006, 132 (04) :371-384
[6]   Adaptive Godunov-based model for flood simulation [J].
Begnudelli, Lorenzo ;
Sanders, Brett F. ;
Bradford, Scott F. .
JOURNAL OF HYDRAULIC ENGINEERING, 2008, 134 (06) :714-725
[7]   Simulation of the St. Francis dam-break flood [J].
Begnudelli, Lorenzo ;
Sanders, Brett F. .
JOURNAL OF ENGINEERING MECHANICS-ASCE, 2007, 133 (11) :1200-1212
[8]   Finite-volume model for shallow-water flooding of arbitrary topography [J].
Bradford, SF ;
Sanders, BF .
JOURNAL OF HYDRAULIC ENGINEERING, 2002, 128 (03) :289-298
[9]   Modeling storm surge flooding of an urban area with particular reference to modeling uncertainties: A case study of Canvey Island, United Kingdom [J].
Brown, James D. ;
Spencer, Tom ;
Moeller, Iris .
WATER RESOURCES RESEARCH, 2007, 43 (06)
[10]  
Chow V.T., 1973, Open Channel Hydraulics