On the width of the electrochemically active region in mixed conducting solid oxide fuel cell cathodes

被引:142
作者
Fleig, J [1 ]
机构
[1] Max Planck Inst Solid State Res, D-70569 Stuttgart, Germany
关键词
three-phase-boundary; solid oxide fuel cells; electrode polarisation; mixed conductors; cathodes;
D O I
10.1016/S0378-7753(01)00944-2
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The width of the electrochemically active zone in a mixed conducting solid oxide fuel cell (SOFC) cathode, i.e. the spatial extension of the three-phase-boundary (3PB) region is numerically calculated for the case when oxide ion transport through the electrode bulk determines the reaction rate of the cathodic oxygen reduction reaction. The current density distribution in the cathode exhibits a sharp maximum at the 3PB and a major fraction of the total current flows in narrow zones with a width of a few percent of the electrode particle size (e.g. in the case of 1.6 mum particle size: approximately 2/3 of the current flows in a zone with a width of 60 nm). Hence, the corresponding polarisation resistance is almost inversely proportional to the 3PB length. In a wide parameter range an increasing ionic conductivity of the mixed conductor does not broaden the electrochemically active region. A formula is presented which allows an estimate of the polarisation resistance of a mixed conducting electrode if ionic transport through the electrode bulk is rate limiting. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:228 / 238
页数:11
相关论文
共 54 条
[1]   Mechanism and kinetics of oxygen reduction on porous La1-xSrxCoO3-δ electrodes [J].
Adler, SB .
SOLID STATE IONICS, 1998, 111 (1-2) :125-134
[2]   Electrode kinetics of porous mixed-conducting oxygen electrodes [J].
Adler, SB ;
Lane, JA ;
Steele, BCH .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1996, 143 (11) :3554-3564
[3]  
Berkel F.P.F.V., 1994, SOLID STATE IONICS, V72, P240
[4]   Geometry dependence of cathode polarization in solid oxide fuel cells investigated by defined Sr-doped LaMnO3 microelectrodes [J].
Brichzin, V ;
Fleig, J ;
Habermeier, HU ;
Maier, J .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2000, 3 (09) :403-406
[5]   OXYGEN-TRANSPORT IN SELECTED NONSTOICHIOMETRIC PEROVSKITE-STRUCTURE OXIDES [J].
CARTER, S ;
SELCUK, A ;
CHATER, RJ ;
KAJDA, J ;
KILNER, JA ;
STEELE, BCH .
SOLID STATE IONICS, 1992, 53 :597-605
[6]   Ionic conductivity of perovskite LaCoO3 measured by oxygen permeation technique [J].
Chen, CH ;
Kruidhof, H ;
Bouwmeester, HJM ;
Burggraaf, AJ .
JOURNAL OF APPLIED ELECTROCHEMISTRY, 1997, 27 (01) :71-75
[7]  
Christie GM, 1996, RISO MAT SCI, P205
[8]   Oxygen transport in La1-xSrxMn1-yCoyO3±δ perovskites -: Part I.: Oxygen tracer diffusion [J].
De Souza, RA ;
Kilner, JA .
SOLID STATE IONICS, 1998, 106 (3-4) :175-187
[9]   DEPOSITION AND ELECTRICAL-PROPERTIES OF THIN POROUS CERAMIC ELECTRODE LAYERS FOR SOLID OXIDE FUEL-CELL APPLICATION [J].
DEHAART, LGJ ;
KUIPERS, RA ;
DEVRIES, KJ ;
BURGGRAAF, AJ .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1991, 138 (07) :1970-1975
[10]   THE KINETICS OF ELECTROCHEMICAL REACTIONS ON HIGH-TEMPERATURE FUEL-CELL ELECTRODES [J].
DIVISEK, J ;
DEHAART, LGJ ;
HOLTAPPELS, P ;
LENNARTZ, T ;
MALLENER, W ;
STIMMING, U ;
WIPPERMANN, K .
JOURNAL OF POWER SOURCES, 1994, 49 (1-3) :257-270