Composite reweighting SU(2) QCD at finite temperature

被引:11
作者
Crompton, PR [1 ]
机构
[1] Univ Glasgow, Dept Phys & Astron, Glasgow G12 8QQ, Lanark, Scotland
关键词
D O I
10.1016/S0550-3213(02)00031-7
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
The Glasgow reweighting method is evaluated for SU(2) lattice gauge theory at nonzero mu and finite T. We establish that the 'overlap problem' of SU(3) measurements, in which the transition points determined from thermodynamic observables have an unphysical dependence on the value of g used to generate ensembles for reweighting, persists for SU(2). By combining the information from different lattice ensembles we alleviate sampling bias in the fugacity expansion, and identify the Lee-Yang zeros associated with the transition to a high density phase that can plausibly be associated with diquark condensation. We also confirm the existence of a line of first order transitions above a critical point in the T-p phase plane previously predicted by effective chiral lagrangian calculations. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:228 / 238
页数:11
相关论文
共 21 条
[1]  
ALFORD M, HEPPH0102047
[2]   Chiral symmetry restoration and realisation of the Goldstone mechanism in the U(1) Gross-Neveu model at non-zero chemical potential [J].
Barbour, I ;
Hands, S ;
Kogut, JB ;
Lombardo, MP ;
Morrison, S .
NUCLEAR PHYSICS B, 1999, 557 (1-2) :327-351
[3]   COMPLEX ZEROS OF THE PARTITION-FUNCTION FOR LATTICE QCD [J].
BARBOUR, IM ;
BELL, AJ .
NUCLEAR PHYSICS B, 1992, 372 (1-2) :385-402
[4]   Phase structure of lattice QCD at finite density with dynamical fermions [J].
Barbour, IM ;
Kogut, JB ;
Morrison, SE .
NUCLEAR PHYSICS B, 1997, :456-458
[5]   Meron-cluster solution of fermion sign problems [J].
Chandrasekharan, S ;
Wiese, UJ .
PHYSICAL REVIEW LETTERS, 1999, 83 (16) :3116-3119
[6]  
CROMPTON PR, HEPLAT0108016
[7]   QUENCHED QCD AT FINITE DENSITY [J].
DAVIES, CTH ;
KLEPFISH, EG .
PHYSICS LETTERS B, 1991, 256 (01) :68-74
[8]  
FODOR Z, HEPLAT0104001
[9]   THE FERMION PROPAGATOR MATRIX IN LATTICE QCD [J].
GIBBS, PE .
PHYSICS LETTERS B, 1986, 172 (01) :53-61
[10]   Random matrices and the convergence of partition function zeros in finite density QCD -: art. no. 076005 [J].
Halász, MA ;
Osborn, JC ;
Stephanov, MA ;
Verbaarschot, JJM .
PHYSICAL REVIEW D, 2000, 61 (07)