A framework to analyze multiple time series data:: A case study with Streptomyces coelicolor

被引:28
作者
Mehra, S
Lian, W
Jayapal, KP
Charaniya, SP
Sherman, DH
Hu, WS
机构
[1] Univ Minnesota, Dept Chem Engn & Mat Sci, Minneapolis, MN 55455 USA
[2] Univ Michigan, Inst Life Sci, Ann Arbor, MI 48109 USA
[3] Univ Michigan, Dept Med Chem, Ann Arbor, MI 48109 USA
[4] Univ Michigan, Dept Chem, Ann Arbor, MI 48109 USA
[5] Univ Michigan, Dept Immunol Microbiol, Ann Arbor, MI 48109 USA
关键词
transcriptome analysis; DNA microarray; streptomyces; antibiotics; time series;
D O I
10.1007/s10295-005-0034-7
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Transcriptional regulation in differentiating microorganisms is highly dynamic involving multiple and interwinding circuits consisted of many regulatory genes. Elucidation of these networks may provide the key to harness the full capacity of many organisms that produce natural products. A powerful tool evolved in the past decade is global transcriptional study of mutants in which one or more key regulatory genes of interest have been deleted. To study regulatory mutants of Streptomyces coelicolor, we developed a framework of systematic analysis of gene expression dynamics. Instead of pair-wise comparison of samples in different combinations, genomic DNA was used as a common reference for all samples in microarray assays, thus, enabling direct comparison of gene transcription dynamics across different isogenic mutants. As growth and various differentiation events may unfold at different rates in different mutants, the global transcription profiles of each mutant were first aligned computationally to those of the wild type, with respect to the corresponding growth and differentiation stages, prior to identification of kinetically differentially expressed genes. The genome scale transcriptome data from wild type and a Delta absA1 mutant of Streptomyces coelicolor were analyzed within this framework, and the regulatory elements affected by the gene knockout were identified. This methodology should find general applications in the analysis of other mutants in our repertoire and in other biological systems.
引用
收藏
页码:159 / 172
页数:14
相关论文
共 24 条
[1]   Aligning gene expression time series with time warping algorithms [J].
Aach, J ;
Church, GM .
BIOINFORMATICS, 2001, 17 (06) :495-508
[2]   Genetic manipulation of antibiotic-producing Streptomyces [J].
Baltz, RH .
TRENDS IN MICROBIOLOGY, 1998, 6 (02) :76-83
[3]   Analyzing time series gene expression data [J].
Bar-Joseph, Z .
BIOINFORMATICS, 2004, 20 (16) :2493-2503
[4]   Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2) [J].
Bentley, SD ;
Chater, KF ;
Cerdeño-Tárraga, AM ;
Challis, GL ;
Thomson, NR ;
James, KD ;
Harris, DE ;
Quail, MA ;
Kieser, H ;
Harper, D ;
Bateman, A ;
Brown, S ;
Chandra, G ;
Chen, CW ;
Collins, M ;
Cronin, A ;
Fraser, A ;
Goble, A ;
Hidalgo, J ;
Hornsby, T ;
Howarth, S ;
Huang, CH ;
Kieser, T ;
Larke, L ;
Murphy, L ;
Oliver, K ;
O'Neil, S ;
Rabbinowitsch, E ;
Rajandream, MA ;
Rutherford, K ;
Rutter, S ;
Seeger, K ;
Saunders, D ;
Sharp, S ;
Squares, R ;
Squares, S ;
Taylor, K ;
Warren, T ;
Wietzorrek, A ;
Woodward, J ;
Barrell, BG ;
Parkhill, J ;
Hopwood, DA .
NATURE, 2002, 417 (6885) :141-147
[5]   The regulation of antibiotic production in Streptomyces coelicolor A3(2) [J].
Bibb, M .
MICROBIOLOGY-SGM, 1996, 142 :1335-1344
[6]   A comparison of normalization methods for high density oligonucleotide array data based on variance and bias [J].
Bolstad, BM ;
Irizarry, RA ;
Åstrand, M ;
Speed, TP .
BIOINFORMATICS, 2003, 19 (02) :185-193
[7]   RELATIONSHIP BETWEEN NITROGEN ASSIMILATION AND CEPHALOSPORIN SYNTHESIS IN STREPTOMYCES-CLAVULIGERUS [J].
BRANA, AF ;
WOLFE, S ;
DEMAIN, AL .
ARCHIVES OF MICROBIOLOGY, 1986, 146 (01) :46-51
[8]   Production of actinorhodin-related ''blue pigments'' by Streptomyces coelicolor A3(2) [J].
Bystrykh, LV ;
FernandezMoreno, MA ;
Herrema, JK ;
Malpartida, F ;
Hopwood, DA ;
Dijkhuizen, L .
JOURNAL OF BACTERIOLOGY, 1996, 178 (08) :2238-2244
[9]  
CHATER KF, 1997, BIOTECHNOLOGY, V7, P57
[10]   Analysis techniques for microarray time-series data [J].
Filkov, V ;
Skiena, S ;
Zhi, JZ .
JOURNAL OF COMPUTATIONAL BIOLOGY, 2002, 9 (02) :317-330