Preliminary in vitro growth cycle and transmission studies of HIV-1 in an autologous primary cell assay of blood-derived macrophages and peripheral blood mononuclear cells

被引:30
作者
Tsai, WP
Conley, SR
Kung, HF
Garrity, RR
Nara, PL
机构
[1] NCI,FREDERICK CANC RES & DEV CTR,DIV BASIC SCI,OFF DIRECTORS,DIRECTORS LAB,VIRUS BIOL SECT,FREDERICK,MD 21702
[2] SCI APPLICAT INT CORP,FREDERICK,MD 21702
关键词
D O I
10.1006/viro.1996.0648
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Recent interest focused on the dynamics of HIV-1 replication in primary monocytes/macrophages and T-lymphocytes of the immune system, as well as the standardization of virological and immunological in vitro assays with primary isolates, provided the impetus for these studies. These types of studies have never been performed as they would occur in vivo, i.e., where the envelope of the virus and cell membranes of the two cell types of the same host origin. Therefore, the biological and physicochemical properties of an uncloned, primary dual-tropic isolate HIV-1(ADA) during the initial lag, log, and stationary phases of viral replication were studied in an autologous donor cell assay in peripheral blood mononuclear cells (PBMC) and blood monocyte-derived macrophages (MDM). Similar total numbers (10(9) virus particles/ml) were produced by both cell types during the stationary period. On a per cell per day basis, during peak stationary periods, 0.92 x 10(3) virions/day for MDMs and 5.31 x 10(3) virions/day for PBMCs were produced. Interestingly, virus replicating from MDMs during the log-growth phase demonstrated the greatest infectious fraction which was 3 logs greater than virus replicating in PBMCs. Despite constant virus particle production in MDMs, the infectious fraction was found to fall 3 to 4 lags over a In-day period. Due to an infectious fraction less than 1 (0.053 infectious unit/cell/24 hr), virus spread in PBMCs during the rapid log phase could only have occurred by cell-to-cell contact, whereas in MDMs with an infectious fraction of about one infectious particle (similar to 1/cell/24 hr), cell-free transmission could account for the observed results. Most of the MDMs (> 90%) became productively infected, whereas only 5-10% of the total PBMCs were found replicating virus. The period of peak stationary virus production (i.e., stationary phase) was at minimum 4 to 5 times longer in MDMs than PBMCs. Whereas the majority of p24, RT, and gp120 found to be associated with MDM-derived virions, no increased dissociation of these components was observed in PBMC-derived virions. The virion-associated gp120 was 3 to 4 times more stable on both PBMC- and MDM-derived virus (> 96 hr) and present at 10-25 times the concentration per virion than that observed for a T-cell-line-adapted laboratory strain of HIV-1 replicating in T-cell lines. These in vitro results suggest that important differences exist between MDMs and PBMCs with regard to the viral dynamics of infection and replication which should provide for a qualitative and quantitative basis to estimate virus replication on a per-cell basis for other known cellular targets of HIV-1. Studying the multiple biophysicochemical characteristics and viral replication dynamics as described herein provides an autologous in vitro model of additional quantifiable parameters for analysis and understanding of virus/host factor(s) and/or antivirals which influence them. (C) 1996 Academic Press, Inc.
引用
收藏
页码:205 / 216
页数:12
相关论文
共 44 条
  • [1] CELLULAR PROTEINS BOUND TO IMMUNODEFICIENCY VIRUSES - IMPLICATIONS FOR PATHOGENESIS AND VACCINES
    ARTHUR, LO
    BESS, JW
    SOWDER, RC
    BENVENISTE, RE
    MANN, DL
    CHERMANN, JC
    HENDERSON, LE
    [J]. SCIENCE, 1992, 258 (5090) : 1935 - 1938
  • [2] The interaction of macrophage and non-macrophage tropic isolates of HIV-1 with thymic and tonsillar dendritic cells in vitro
    Cameron, PU
    Lowe, MG
    Sotzik, F
    Coughlan, AF
    Crowe, SM
    Shortman, K
    [J]. JOURNAL OF EXPERIMENTAL MEDICINE, 1996, 183 (04) : 1851 - 1856
  • [3] The amount of host HLA-DR proteins acquired by HIV-1 is virus strain- and cell type-specific
    Cantin, R
    Fortin, JF
    Tremblay, M
    [J]. VIROLOGY, 1996, 218 (02) : 372 - 381
  • [4] IN-VIVO FATE OF HIV-1-INFECTED T-CELLS - QUANTITATIVE-ANALYSIS OF THE TRANSITION TO STABLE LATENCY
    CHUN, TW
    FINZI, D
    MARGOLICK, J
    CHADWICK, K
    SCHWARTZ, D
    SILICIANO, RF
    [J]. NATURE MEDICINE, 1995, 1 (12) : 1284 - 1290
  • [5] QUANTITATION OF HUMAN-IMMUNODEFICIENCY-VIRUS TYPE-1 INFECTION KINETICS
    DIMITROV, DS
    WILLEY, RL
    SATO, H
    CHANG, LJ
    BLUMENTHAL, R
    MARTIN, MA
    [J]. JOURNAL OF VIROLOGY, 1993, 67 (04) : 2182 - 2190
  • [6] ASSEMBLY AND MORPHOLOGY OF HIV - POTENTIAL EFFECT OF STRUCTURE ON VIRAL FUNCTION
    GELDERBLOM, HR
    [J]. AIDS, 1991, 5 (06) : 617 - 638
  • [7] EFFICIENT ISOLATION AND PROPAGATION OF HUMAN IMMUNODEFICIENCY VIRUS ON RECOMBINANT COLONY-STIMULATING FACTOR-1-TREATED MONOCYTES
    GENDELMAN, HE
    ORENSTEIN, JM
    MARTIN, MA
    FERRUA, C
    MITRA, R
    PHIPPS, T
    WAHL, LA
    LANE, HC
    FAUCI, AS
    BURKE, DS
    SKILLMAN, D
    MELTZER, MS
    [J]. JOURNAL OF EXPERIMENTAL MEDICINE, 1988, 167 (04) : 1428 - 1441
  • [8] CELL-TO-CELL TRANSMISSION OF HUMAN IMMUNODEFICIENCY VIRUS TYPE-1 IN THE PRESENCE OF AZIDOTHYMIDINE AND NEUTRALIZING ANTIBODY
    GUPTA, P
    BALACHANDRAN, R
    HO, M
    ENRICO, A
    RINALDO, C
    [J]. JOURNAL OF VIROLOGY, 1989, 63 (05) : 2361 - 2365
  • [9] RAPID TURNOVER OF PLASMA VIRIONS AND CD4 LYMPHOCYTES IN HIV-1 INFECTION
    HO, DD
    NEUMANN, AU
    PERELSON, AS
    CHEN, W
    LEONARD, JM
    MARKOWITZ, M
    [J]. NATURE, 1995, 373 (6510) : 123 - 126
  • [10] REPLICATION OF HUMAN-IMMUNODEFICIENCY-VIRUS TYPE-1 IN PRIMARY DENDRITIC CELL-CULTURES
    LANGHOFF, E
    TERWILLIGER, EF
    BOS, HJ
    KALLAND, KH
    POZNANSKY, MC
    BACON, OML
    HASELTINE, WA
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1991, 88 (18) : 7998 - 8002