A mammalian lysosomal membrane protein confers multidrug resistance upon expression in Saccharomyces cerevisiae

被引:41
作者
Hogue, DL [1 ]
Kerby, L [1 ]
Ling, V [1 ]
机构
[1] British Columbia Canc Res Ctr, Vancouver, BC V5Z 1L3, Canada
关键词
D O I
10.1074/jbc.274.18.12877
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Mouse transporter protein (MTP) is a highly conserved polytopic membrane protein present in mammalian lysosomes and endosomes. The role of MTP in regulating the in vivo subcellular distribution of numerous structurally distinct small molecules has been examined in this study by its expression in a drug-sensitive strain of the yeast Saccharomyces cerevisiae. Surprisingly, the expression of MTP in membranes of an intracellular compartment resulted in a cellular resistance or hypersensitivity to a range of drugs that included nucleoside and nucleobase analogs, antibiotics, anthracyclines, ionophores, and steroid hormones. The intracellular bioavailability of steroid hormones was altered by MTP, as determined using an in vivo glucocorticoid receptor-driven reporter assay in yeast, suggesting that the MTP-regulated drug sensitivity arose due to a change in the subcellular compartmentalization of steroid hormones and other drugs. MTP-regulated drug sensitivity in yeast was blocked to varying degrees by compounds that inhibit lysosomal function, interfere with intracellular cholesterol transport, or modulate the multidrug resistance phenotype of mammalian cells. These results indicate that MTP is involved in the subcellular compartmentalization of diverse hydrophobic small molecules and contributes to the inherent drug sensitivity or resistance of the mammalian cell.
引用
收藏
页码:12877 / 12882
页数:6
相关论文
共 68 条
[1]  
AIKAWA K, 1994, BBA-LIPID LIPID MET, V1213, P127
[2]  
[Anonymous], 1994, METHODS YEAST GENETI
[3]   PLEIOTROPIC PHENOTYPE OF COLCHICINE-RESISTANT CHO CELLS - CROSS-RESISTANCE AND COLLATERAL SENSITIVITY [J].
BECHHANSEN, NT ;
TILL, JE ;
LING, V .
JOURNAL OF CELLULAR PHYSIOLOGY, 1976, 88 (01) :23-31
[4]  
BECK WT, 1991, MOL CLIN ADV ANTICAN, P151
[5]  
BERINSONE P, 1998, ANN NY ACAD SCI, V842, P91
[6]  
BREUNINGER LM, 1995, CANCER RES, V55, P5342
[7]  
BUTLER JD, 1992, J BIOL CHEM, V267, P23797
[8]  
Cabrita M. A., 1996, Molecular Biology of the Cell, V7, p135A
[9]   Niemann-Pick C1 disease gene: Homology to mediators of cholesterol homeostasis [J].
Carstea, ED ;
Morris, JA ;
Coleman, KG ;
Loftus, SK ;
Zhang, D ;
Cummings, C ;
Gu, J ;
Rosenfeld, MA ;
Pavan, WJ ;
Krizman, DB ;
Nagle, J ;
Polymeropoulos, MH ;
Sturley, SL ;
Ioannou, YA ;
Higgins, ME ;
Comly, M ;
Cooney, A ;
Brown, A ;
Kaneski, CR ;
BlanchetteMackie, EJ ;
Dwyer, NK ;
Neufeld, EB ;
Chang, TY ;
Liscum, L ;
Strauss, JF ;
Ohno, K ;
Zeigler, M ;
Carmi, R ;
Sokol, J ;
Markie, D ;
ONeill, RR ;
vanDiggelen, OP ;
Elleder, M ;
Patterson, MC ;
Brady, RO ;
Vanier, MT ;
Pentchev, PG ;
Tagle, DA .
SCIENCE, 1997, 277 (5323) :228-231
[10]   IDENTIFICATION AND CHARACTERIZATION OF SNQ2, A NEW MULTIDRUG ATP BINDING CASSETTE TRANSPORTER OF THE YEAST PLASMA-MEMBRANE [J].
DECOTTIGNIES, A ;
LAMBERT, L ;
CATTY, P ;
DEGAND, H ;
EPPING, EA ;
MOYEROWLEY, WS ;
BALZI, E ;
GOFFEAU, A .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (30) :18150-18157