Effect of a coadsorbent on the performance of dye-sensitized TiO2 solar cells:: Shielding versus band-edge movement

被引:287
作者
Neale, NR
Kopidakis, N
van de Lagemaat, J
Grätzel, M
Frank, AJ [1 ]
机构
[1] Natl Renewable Energy Lab, Golden, CO 80401 USA
[2] Swiss Fed Inst Technol, Lab Photon & Interfaces, CH-1015 Lausanne, Switzerland
关键词
D O I
10.1021/jp0538666
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The mechanism by which the adsorbent chenodeoxycholate, cografted with a sensitizer onto TiO2 nanocrystals, alters the open-circuit photovoltage and short-circuit current of dye-sensitized solar cells was investigated. The influence of tetrabutylammonium chenodeoxycholate on dye loading was studied under a variety of conditions in which the TiO2 films were exposed to the sensitizing dye and coadsorbent. Photocurrent-voltage measurements combined with desorption studies revealed that adding chenodeoxycholate reduces the dye loading by as much as 60% while having a relatively small effect on the short-circuit photocurrent. Calculations along with measurements showed that even at low loading, enough dye is present to absorb a significant fraction of the incident light in the visible spectrum. In concurrence with the observations of others, we find evidence for weakly and strongly adsorbed forms of the dye resulting from either different binding conformations or aggregates. The most strongly adsorbed dyes are less susceptible to displacement by chenodeoxycholate than those that are weakly adsorbed. While having no observable effect on dye coverage, multiple exposures of a TiO2 film to a dye solution substantially increased the fraction of strongly adsorbed dye as judged by the resistance of the adsorbed dye to displacement by chenodeoxycholate. Measurements of the open-circuit voltage as a function of the photocharge density, determined by infrared transmittance, showed that chenodeoxycholate, not only shifts the conduction band edge to negative potentials, but also significantly increases the rate of recombination. The net effect of adding chenodeoxycholate is, however, to improve the photovoltage.
引用
收藏
页码:23183 / 23189
页数:7
相关论文
共 43 条
[1]  
ASTM, 1998, ASTM G159-98
[2]   Determination of the density and energetic distribution of electron traps in dye-sensitized nanocrystalline solar cells [J].
Bailes, M ;
Cameron, PJ ;
Lobato, K ;
Peter, LM .
JOURNAL OF PHYSICAL CHEMISTRY B, 2005, 109 (32) :15429-15435
[3]   Interfacial electron-transfer dynamics in Ru(tcterpy)(NCS)3-sensitized TiO2 nanocrystalline solar cells [J].
Bauer, C ;
Boschloo, G ;
Mukhtar, E ;
Hagfeldt, A .
JOURNAL OF PHYSICAL CHEMISTRY B, 2002, 106 (49) :12693-12704
[4]  
Benkstein KD, 2003, J PHYS CHEM B, V107, P7759, DOI [10.1021/jp022681l, 10.1021/jp0226811]
[5]   Hydrophobic, highly conductive ambient-temperature molten salts [J].
Bonhote, P ;
Dias, AP ;
Papageorgiou, N ;
Kalyanasundaram, K ;
Gratzel, M .
INORGANIC CHEMISTRY, 1996, 35 (05) :1168-1178
[6]   Investigation of the kinetics of the back reaction of electrons with tri-iodide in dye-sensitized nanocrystalline photovoltaic cells [J].
Duffy, NW ;
Peter, LM ;
Rajapakse, RMG ;
Wijayantha, KGU .
JOURNAL OF PHYSICAL CHEMISTRY B, 2000, 104 (38) :8916-8919
[7]   SPECTRAL MISMATCH CORRECTION FOR GAAS SOLAR-CELLS WITH VARYING JUNCTION DEPTHS [J].
EMERY, KA ;
OSTERWALD, CR ;
AHARONI, H .
SOLID-STATE ELECTRONICS, 1987, 30 (02) :213-215
[8]   The adsorption behavior of a rutheninm-based sensitizing dye to nanocrystalline TiO2 -: Coverage effects on the external and internal sensitization quantum yields [J].
Fillinger, A ;
Parkinson, BA .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1999, 146 (12) :4559-4564
[9]   Dye sensitization of natural anatase crystals with a ruthenium-based dye [J].
Fillinger, A ;
Soltz, D ;
Parkinson, BA .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2002, 149 (09) :A1146-A1156
[10]   Frequency-resolved optical detection of photoinjected electrons in dye-sensitized nanocrystalline photovoltaic cells [J].
Franco, G ;
Gehring, J ;
Peter, LM ;
Ponomarev, EA ;
Uhlendorf, I .
JOURNAL OF PHYSICAL CHEMISTRY B, 1999, 103 (04) :692-698