Dataset Optimization for Real-Time Pedestrian Detection

被引:9
作者
Trichet, Remi [1 ]
Bremond, Francois [1 ]
机构
[1] INRIA Sophia Antipolis Mediterannee, F-06902 Valbonne, France
来源
IEEE ACCESS | 2018年 / 6卷
关键词
Data Selection; dataset optimization; imbalanced datsets; computer vision; pedestrian detection; real-time application; SINGLE;
D O I
10.1109/ACCESS.2017.2788058
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper tackles the problem of data selection for training set generation in the context of near real-time pedestrian detection through the introduction of a training methodology: FairTrain. After highlighting the impact of poorly chosen data on detector performance, we introduce a new data selection technique utilizing the expectation-maximization algorithm for data weighting. FairTrain also features a version of the cascade-of-rejectors enhanced with data selection principles. Experiments on the INRIA and CALTECH data sets prove that, when finely trained, a simple HoG-based detector can outperform most of its near real-time competitors.
引用
收藏
页码:7719 / 7727
页数:9
相关论文
共 56 条
[1]  
[Anonymous], 2014, P 27 INT C NEURAL IN
[2]  
[Anonymous], 2010, Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, DOI DOI 10.1109/CVPR.2010.5539906
[3]  
[Anonymous], 2011, P ICVS
[4]  
[Anonymous], P IEEE C COMP VIS PA
[5]  
Bar-Hillel A, 2010, LECT NOTES COMPUT SC, V6314, P127, DOI 10.1007/978-3-642-15561-1_10
[6]  
Benenson R., 2014, P CVRSUAD WORKSH ECC
[7]  
Benenson R., 2013, P CVPR, P2903
[8]   Seeking the strongest rigid detector [J].
Benenson, Rodrigo ;
Mathias, Markus ;
Tuytelaars, Tinne ;
Van Gool, Luc .
2013 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2013, :3666-3673
[9]   Fast Human Detection with Cascaded Ensembles on the GPU [J].
Bilgic, Berkin ;
Horn, Berthold K. P. ;
Masaki, Ichiro .
2010 IEEE INTELLIGENT VEHICLES SYMPOSIUM (IV), 2010, :325-332
[10]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32