Exponential behavior in the presence of dependence in risk theory

被引:133
作者
Albrecher, H
Teugels, JL
机构
[1] Graz Univ Technol, Dept Math, A-8010 Graz, Austria
[2] Katholieke Univ Leuven, Dept Math, B-3001 Heverlee, Belgium
[3] EURANDOM, Eindhoven, Netherlands
关键词
dependence; risk model; copula; renewal theory; Wiener-Hopf theory;
D O I
10.1239/jap/1143936258
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider an insurance portfolio situation in which there is possible dependence between the waiting time for a claim and its actual size. By employing the underlying random walk structure we obtain explicit exponential estimates for infinite- and finite-time ruin probabilities in the case of light-tailed claim sizes. The results are illustrated in several examples, worked out for specific dependence structures.
引用
收藏
页码:257 / 273
页数:17
相关论文
共 16 条
[1]  
[Anonymous], 1968, Probability
[3]  
Asmussen S., 2000, Ruin probabilities
[4]   Some asymptotic results for transient random walks with applications to insurance risk [J].
Baltrunas, A .
JOURNAL OF APPLIED PROBABILITY, 2001, 38 (01) :108-121
[5]  
Feller W., 1966, INTRO PROBABILITY TH, V2
[6]   STATISTICAL-INFERENCE PROCEDURES FOR BIVARIATE ARCHIMEDEAN COPULAS [J].
GENEST, C ;
RIVEST, LP .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1993, 88 (423) :1034-1043
[7]  
HURLIMANN W, 2000, SPEARMAN MULTIVARIAT
[8]  
Joe H, 1997, MULTIVARIATE MODELS
[9]  
Kotz S., 2000, CONTINUOUS MULTIVARI, V1
[10]  
Nelsen R. B., 1999, INTRO COPULAS