The Park Grass Experiment 1856-2006: Its contribution to ecology

被引:300
作者
Silvertown, Jonathan
Poulton, Paul
Johnston, Edward [1 ]
Edwards, Grant
Heard, Matthew
Biss, Pamela M.
机构
[1] Open Univ, Dept Biol Sci, Milton Keynes MK7 6AA, Bucks, England
[2] Rothamsted Res, Harpenden AL5 2JQ, Herts, England
[3] Lincoln Univ, Field Serv Ctr, Agr Grp, Canterbury, New Zealand
[4] Ctr Ecol & Hydrol, Huntingdon PE28 2LS, Cambs, England
基金
英国自然环境研究理事会;
关键词
long-term experiment; permanent grassland; biodiversity; plant population dynamics; natural selection; plant nutrition; soil fertility; stability; ecological genetics;
D O I
10.1111/j.1365-2745.2006.01145.x
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
1 The Park Grass Experiment, begun in 1856, is the oldest ecological experiment in existence. Its value to science has changed and grown since it was founded to answer agricultural questions. In recent times the experiment has shown inter alia how: plant species richness, biomass and pH are related; community composition responds to climatic perturbation and nutrient additions; soil is acidified and corrected by liming. It also provided one of the first demonstrations of the evolution of adaptation at a very local scale and contains a putative case of the evolution of reproductive isolation by reinforcement. The application of molecular genetic markers to archived plant material promises to reveal a whole new chapter of genetic detail about the long-term dynamics of plant populations. 2 Over the range of values observed at Park Grass, biomass (productivity) has a negative effect upon species richness. Any positive effect of species richness on productivity could only be weak by comparison. The experiment provides support for both the competitive exclusion and pool size hypotheses for determination of species density. 3 Instantaneous comparisons of species richness between plots do not accurately reflect temporal rates of loss which may be multiplicative rather than additive. This suggests that comparisons among sites, nutrient inputs, especially N treatments, or soil acidity may in general underestimate the threat posed to plant species diversity by long-term changes in plant nutrient availability, both enrichment and depletion. 4 Differences between plots at the community level are maintained despite a flow of propagules between plots. There is no strong evidence for a spatial mass effect. 5 Guild (grass/legume/other) compositions of plant communities have equilibrated, but the species composition within guilds is more dynamic and continues to change over time, suggesting that species and guild abundances are independently regulated. 6 At least some members of all the major trophic levels, including predators (spiders), herbivores (leafhoppers) and detritivores (springtails) are treatment-specific in their distributions. 7 Plant populations on Park Grass are subdivided by treatments which, to some degree, have led to plots becoming genetically isolated from one another and decoupled demographically. This subdivision has created a metapopulation structure in each species, characterized by species-specific rates of local colonization and extinction. 8 Inverse clines in flowering time occur in the grass Anthoxanthum odoratum across some plot boundaries. These suggest that reproductive isolation between plots has been reinforced by natural selection. 9 Drift as well as selection may have taken place in A. odoratum, especially on plots where effective population size is restricted by population bottlenecks caused by drought. 10 Park Grass illustrates how long-term experiments grow in value with time and how they may be used to investigate scientific questions that were inconceivable at their inception. This is as likely to be true of the future of Park Grass as it has proved to be of its past.
引用
收藏
页码:801 / 814
页数:14
相关论文
共 78 条
[1]  
ARNOLD PW, 1976, ANN AGRON, V27, P1027
[2]   PERTURBATION EXPERIMENTS IN COMMUNITY ECOLOGY - THEORY AND PRACTICE [J].
BENDER, EA ;
CASE, TJ ;
GILPIN, ME .
ECOLOGY, 1984, 65 (01) :1-13
[3]   Three-way interactions among mutualistic mycorrhizal fungi, plants, and plant enemies: Hypotheses and synthesis [J].
Bennett, AE ;
Alers-Garcia, J ;
Bever, JD .
AMERICAN NATURALIST, 2006, 167 (02) :141-152
[4]   Successful amplification of rice chloroplast microsatellites from century-old grass samples from the Park Grass Experiment [J].
Biss, P ;
Freeland, J ;
Silvertown, J ;
McConway, K ;
Lutman, P .
PLANT MOLECULAR BIOLOGY REPORTER, 2003, 21 (03) :249-257
[5]   Changes in soil chemistry accompanying acidification over more than 100 years under woodland and grass at Rothamsted Experimental Station, UK [J].
Blake, L ;
Goulding, KWT ;
Mott, CJB ;
Johnston, AE .
EUROPEAN JOURNAL OF SOIL SCIENCE, 1999, 50 (03) :401-412
[8]   Reconciling plant strategy theories of Grime and Tilman [J].
Craine, JM .
JOURNAL OF ECOLOGY, 2005, 93 (06) :1041-1052
[9]  
Crawley M. J., 1983, Herbivory. The dynamics of animal--plant interactions.
[10]   Determinants of species richness in the park grass experiment [J].
Crawley, MJ ;
Johnston, AE ;
Silvertown, J ;
Dodd, M ;
de Mazancourt, C ;
Heard, MS ;
Henman, DF ;
Edwards, GR .
AMERICAN NATURALIST, 2005, 165 (02) :179-192