A fibril-network-reinforced biphasic model of cartilage in unconfined compression

被引:176
作者
Soulhat, J [1 ]
Buschmann, MD
Shirazi-Adl, A
机构
[1] Ecole Polytech, Inst Biomed Engn, Montreal, PQ H3C 3A7, Canada
[2] Ecole Polytech, Dept Chem Engn, Montreal, PQ H3C 3A7, Canada
[3] Ecole Polytech, Dept Mech Engn, Montreal, PQ H3C 3A7, Canada
来源
JOURNAL OF BIOMECHANICAL ENGINEERING-TRANSACTIONS OF THE ASME | 1999年 / 121卷 / 03期
关键词
D O I
10.1115/1.2798330
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
Cartilage mechanical function relies on a composite structure of a collagen fibrillar network entrapping a proteoglycan matrix. Previous biphasic or poroelastic models of this tissue, which have approximated its composite structure using a homogeneous solid phase, have experienced difficulties in describing measured material responses. Progress to date in resolving these difficulties has demonstrated that a constitutive law that is successful for one test geometry (confined compression) is not necessarily successful for another (unconfined compression). In this study, we hypothesize that an alternative fibril-reinforced composite biphasic representation of cartilage can predict measured material responses and explore this hypothesis by developing and solving analytically a fibril-reinforced biphasic model for the case of uniaxial unconfined compression with frictionless compressing platens. The fibrils were considered to provide stiffness in tension only. The lateral stiffening provided by the fibril network dramatically increased the frequency dependence of disk rigidity in dynamic sinusoidal compression and the magnitude of the stress relaxation transient, in qualitative agreement with previously published data. Fitting newly obtained experimental stress relaxation data to the composite model allowed extraction of mechanical parameters from these tests, such as the rigidity of the fibril network, in addition to the elastic constants and the hydraulic permeability of the remaining matrix. Model calculations further highlight a potentially important difference between homogeneous and fibril-reinforced composite models. In the latter type of model, the stresses carried by different constituents can be dissimilar, even in sign (compression versus tension) even though strains can be identical. Such behavior, resulting only from a structurally physiological description, could have consequences in the efforts to understand the mechanical signals that determine cellular and extracellular biological responses to mechanical loads in cartilage.
引用
收藏
页码:340 / 347
页数:8
相关论文
共 28 条
[1]   Poroelastic creep response analysis of a lumbar motion segment in compression [J].
Argoubi, M ;
ShiraziAdl, A .
JOURNAL OF BIOMECHANICS, 1996, 29 (10) :1331-1339
[2]  
ARMSTRONG CG, 1984, J BIOMECH ENG-T ASME, V106, P165, DOI 10.1115/1.3138475
[3]   A COMPOSITE MICROMECHANICAL MODEL FOR CONNECTIVE TISSUES .2. APPLICATION TO RAT TAIL TENDON AND JOINT CAPSULE [J].
AULT, HK ;
HOFFMAN, AH .
JOURNAL OF BIOMECHANICAL ENGINEERING-TRANSACTIONS OF THE ASME, 1992, 114 (01) :142-146
[4]   A COMPOSITE MICROMECHANICAL MODEL FOR CONNECTIVE TISSUES .1. THEORY [J].
AULT, HK ;
HOFFMAN, AH .
JOURNAL OF BIOMECHANICAL ENGINEERING-TRANSACTIONS OF THE ASME, 1992, 114 (01) :137-141
[5]   General theory of three-dimensional consolidation [J].
Biot, MA .
JOURNAL OF APPLIED PHYSICS, 1941, 12 (02) :155-164
[6]   EXPERIMENTAL-DETERMINATION OF THE LINEAR BIPHASIC CONSTITUTIVE COEFFICIENTS OF HUMAN-FETAL PROXIMAL FEMORAL CHONDROEPIPHYSIS [J].
BROWN, TD ;
SINGERMAN, RJ .
JOURNAL OF BIOMECHANICS, 1986, 19 (08) :597-605
[7]  
BURSAC PM, 1997, ASME BED, V36, P157
[8]  
Buschmann MD, 1998, J BIOMECH, V31, P171, DOI 10.1016/S0021-9290(97)00124-3
[9]   Numerical conversion of transient to harmonic response functions for linear viscoelastic materials [J].
Buschmann, MD .
JOURNAL OF BIOMECHANICS, 1997, 30 (02) :197-202
[10]  
COHEN B, 1992, T AM SOC MECH ENG, P187