On the statistical analysis of smoothing by maximizing dirty Markov random field posterior distributions

被引:21
作者
Sardy, S [1 ]
Tseng, P
机构
[1] Swiss Fed Inst Technol, Math Inst, CH-1015 Lausanne, Switzerland
[2] Univ Washington, Dept Math, Seattle, WA 98195 USA
关键词
convex programming; empirical Bayes; ICM; maximum a posteriori; nondifferentiable; Bayes prior; total variation;
D O I
10.1198/016214504000000188
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider Bayesian nonpararnetric function estimation using a Markov random field prior based on the Laplace distribution. We describe efficient methods for finding the exact maximum a posteriori estimate, which handle constraints naturally and avoid the problems posed by nondifferentiability of the posterior distribution; the methods also make links to spline and wavelet smoothers and to a dual posterior distribution. Three automatic smoothing parameter selection procedures are described: empirical Bayes, two-fold cross-validation, and a universal rule for the Laplace prior. Monte Carlo Simulation with Gaussian and Poisson responses demonstrates that the flew estimator can give better estimates of nonsmooth functions than can a similar prior based on the Gaussian distribution or wavelet-based competitors. Applications are given to spectral density estimation and to Poisson image denoising.
引用
收藏
页码:191 / 204
页数:14
相关论文
共 38 条
[1]   Wavelet thresholding via a Bayesian approach [J].
Abramovich, F ;
Sapatinas, T ;
Silverman, BW .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1998, 60 :725-749
[2]  
[Anonymous], 1993, SPECTRAL ANAL PHYS A, DOI [10.1017/cbo9780511622762, DOI 10.1017/CBO9780511622762, 10.1017/CBO9780511622762]
[3]   THE TRANSFORMATION OF POISSON, BINOMIAL AND NEGATIVE-BINOMIAL DATA [J].
ANSCOMBE, FJ .
BIOMETRIKA, 1948, 35 (3-4) :246-254
[4]   Regularization of wavelet approximations - Rejoinder [J].
Antoniadis, A ;
Fan, J .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2001, 96 (455) :964-967
[5]  
Auslender A, 1976, Optimisation: Methodes numeques
[6]  
BESAG J, 1974, J ROY STAT SOC B MET, V36, P192
[7]   On conditional and intrinsic autoregressions [J].
Besag, J ;
Kooperberg, C .
BIOMETRIKA, 1995, 82 (04) :733-746
[8]  
Besag J, 2001, STAT SCI, V16, P265
[9]  
Besag J., 1986, J ROYAL STAT SOC B, V48, P192
[10]  
BESAG J, 1989, J APPL STAT, V16, P395, DOI DOI 10.1080/02664768900000049