Limit theorems for multipower variation in the presence of jumps

被引:115
作者
Barndorff-Nielsen, OE
Shephard, N
Winkel, M
机构
[1] Univ Oxford, Nuffield Coll, Oxford OX1 1NF, England
[2] Aarhus Univ, Dept Math Sci, DK-8000 Aarhus C, Denmark
[3] Univ Oxford, Dept Stat, Oxford OX1 3TG, England
基金
英国经济与社会研究理事会;
关键词
bipower variation; infinite activity; multipower variation; power variation; quadratic variation; semimartingales; stochastic volatility;
D O I
10.1016/j.spa.2006.01.007
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper we provide a systematic study of how the probability limit and central limit theorem for realised multipower variation changes when we add finite activity and infinite activity jump processes to an underlying Brownian semimartingale. (C) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:796 / 806
页数:11
相关论文
共 14 条
[1]  
Barndorff-Nielsen O.E., 2004, J Finan Econ, V1, P1, DOI DOI 10.1093/JJFINEC/NBH001
[2]  
Barndorff-Nielsen OE, 2003, BERNOULLI, V9, P1109
[3]   Realized power variation and stochastic volatility models [J].
Barndorff-Nielsen, OE ;
Shephard, N .
BERNOULLI, 2003, 9 (02) :243-265
[4]   Econometric analysis of realized covariation: High frequency based covariance, regression, and correlation in financial economics [J].
Barndorff-Nielsen, OE ;
Shephard, N .
ECONOMETRICA, 2004, 72 (03) :885-925
[5]  
Barndorff-Nielsen OleE., 2006, Journal of financial Econometrics, V4, p1. 1, DOI DOI 10.1093/JJFINEC/NBI022
[6]  
BARNDORFFNIELSE.OE, 2006, IN PRESS FESTSCHRIFT
[7]  
BARNDORFFNIELSE.OE, 2006, IN PRESS ECONOMETRIC, V22
[8]  
Bertoin J., 1996, Levy Processes
[9]  
BLUMENTHAL RM, 1961, J MATH MECH, V10, P493
[10]  
Jacod J, 1998, ANN PROBAB, V26, P267