Image Informative Maps for Estimating Noise Standard Deviation and Texture Parameters

被引:23
作者
Uss, M. [1 ,2 ]
Vozel, B. [1 ]
Lukin, V. [3 ]
Abramov, S. [3 ]
Baryshev, I. [2 ]
Chehdi, K. [1 ]
机构
[1] Univ Rennes 1, TSI2M Lab, BP 80518, F-22305 Lannion, France
[2] Natl Aerosp Univ, Kharkov Aviat Inst, Dept Design Aircraft Radioelect Syst, UA-61070 Kharkov, Ukraine
[3] Natl Aerosp Univ, Kharkov Aviat Inst, Dept Receivers Transmitters & Signal Proc, UA-61070 Kharkov, Ukraine
来源
EURASIP JOURNAL ON ADVANCES IN SIGNAL PROCESSING | 2011年
关键词
OPERATIONAL METHOD;
D O I
10.1155/2011/806516
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The problem of automatic detection of image areas appropriate for accurate estimation of additive noise standard deviation (STD) irrespectively to processed image properties is considered in this paper. For accurate estimation of either image texture or noise STD, we distinguish two complementary informative maps: noise- (NI-) and texture- (TI-) informative ones. The NI map is determined and iteratively upgraded based on the Fisher information on noise STD calculated in scanning window (SW) fashion. Fractional Brownian motion (fBm) model for image texture is used to derive the required Fisher information. To extract final noise STD from NI map, fBm- and DCT-based estimators are implemented. The performance of these two estimators is comparatively assessed on large image database for different noise levels. It is also compared with performance of two competitive state-of-the-art estimators recently published. Utilizing NI map along with DCT-based noise STD estimator has proved to be significantly more efficient.
引用
收藏
页数:12
相关论文
共 35 条
[1]  
Abramov S. K., 2008, SPIE J APPL REMOTE S, V2, P15
[2]  
Aiazzi B, 2006, ANN GEOPHYS-ITALY, V49, P1
[3]   Quality Assessment of Data Products from a New Generation Airborne Imaging Spectrometer [J].
Alparone, Luciano ;
Selva, Massimo ;
Capobianco, Luca ;
Chiarantini, Sandro Moretti Leandro ;
Butera, Francesco .
2009 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS 1-5, 2009, :2802-+
[4]  
[Anonymous], 2015, Linear and Nonlinear Programming
[5]   FUNDAMENTAL LIMITS OF IMAGE DENOISING: ARE WE THERE YET? [J].
Chatterjee, Priyam ;
Milanfar, Peyman .
2010 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2010, :1358-1361
[6]   Image denoising by sparse 3-D transform-domain collaborative filtering [J].
Dabov, Kostadin ;
Foi, Alessandro ;
Katkovnik, Vladimir ;
Egiazarian, Karen .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2007, 16 (08) :2080-2095
[7]   NOISE VARIANCE ESTIMATION IN NONLOCAL TRANSFORM DOMAIN [J].
Danielyan, Aram ;
Foi, Alessandro .
LNLA: 2009 INTERNATIONAL WORKSHOP ON LOCAL AND NON-LOCAL APPROXIMATION IN IMAGE PROCESSING, 2009, :41-45
[8]  
de Santis A., 2010, INT J TOMOGRAPHY STA, V13, P19
[9]   Training methods for image noise level estimation on wavelet components [J].
De Stefano, A ;
White, RR ;
Collis, WB .
EURASIP JOURNAL ON APPLIED SIGNAL PROCESSING, 2004, 2004 (16) :2400-2407
[10]  
Elad M, 2010, SPARSE AND REDUNDANT REPRESENTATIONS, P3, DOI 10.1007/978-1-4419-7011-4_1