Influenza HA Subtypes Demonstrate Divergent Phenotypes for Cleavage Activation and pH of Fusion: Implications for Host Range and Adaptation

被引:171
作者
Galloway, Summer E. [1 ]
Reed, Mark L. [2 ]
Russell, Charles J. [2 ,3 ]
Steinhauer, David A. [1 ]
机构
[1] Emory Univ, Sch Med, Dept Microbiol & Immunol, Atlanta, GA 30322 USA
[2] St Jude Childrens Res Hosp, Dept Infect Dis, Memphis, TN 38105 USA
[3] Univ Tennessee, Ctr Hlth Sci, Dept Microbiol Immunol & Biochem, Memphis, TN 38163 USA
来源
PLOS PATHOGENS | 2013年 / 9卷 / 02期
关键词
TRYPSIN-LIKE PROTEASE; HUMAN AIRWAY EPITHELIUM; VIRAL MEMBRANE-FUSION; A VIRUS HEMAGGLUTININ; PROTEOLYTIC CLEAVAGE; SUBSTRATE-SPECIFICITY; CONNECTING PEPTIDE; SOUTHEASTERN CHINA; SERINE PROTEASES; CHICK-EMBRYO;
D O I
10.1371/journal.ppat.1003151
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
The influenza A virus (IAV) HA protein must be activated by host cells proteases in order to prime the molecule for fusion. Consequently, the availability of activating proteases and the susceptibility of HA to protease activity represents key factors in facilitating virus infection. As such, understanding the intricacies of HA cleavage by various proteases is necessary to derive insights into the emergence of pandemic viruses. To examine these properties, we generated a panel of HAs that are representative of the 16 HA subtypes that circulate in aquatic birds, as well as HAs representative of the subtypes that have infected the human population over the last century. We examined the susceptibility of the panel of HA proteins to trypsin, as well as human airway trypsin-like protease (HAT) and transmembrane protease, serine 2 (TMPRSS2). Additionally, we examined the pH at which these HAs mediated membrane fusion, as this property is related to the stability of the HA molecule and influences the capacity of influenza viruses to remain infectious in natural environments. Our results show that cleavage efficiency can vary significantly for individual HAs, depending on the protease, and that some HA subtypes display stringent selectivity for specific proteases as activators of fusion function. Additionally, we found that the pH of fusion varies by 0.7 pH units among the subtypes, and notably, we observed that the pH of fusion for most HAs from human isolates was lower than that observed from avian isolates of the same subtype. Overall, these data provide the first broad-spectrum analysis of cleavage-activation and membrane fusion characteristics for all of the IAV HA subtypes, and also show that there are substantial differences between the subtypes that may influence transmission among hosts and establishment in new species.
引用
收藏
页数:17
相关论文
共 80 条
[1]   SINGLE GENE DETERMINES HOST RANGE OF INFLUENZA-VIRUS [J].
ALMOND, JW .
NATURE, 1977, 270 (5638) :617-618
[2]   PLAQUE-FORMATION BY INFLUENZA-VIRUSES IN PRESENCE OF TRYPSIN [J].
APPLEYARD, G ;
MABER, HB .
JOURNAL OF GENERAL VIROLOGY, 1974, 25 (DEC) :351-357
[3]   STRUCTURE OF INFLUENZA-VIRUS HEMAGGLUTININ COMPLEXED WITH A NEUTRALIZING ANTIBODY [J].
BIZEBARD, T ;
GIGANT, B ;
RIGOLET, P ;
RASMUSSEN, B ;
DIAT, O ;
BOSECKE, P ;
WHARTON, SA ;
SKEHEL, JJ ;
KNOSSOW, M .
NATURE, 1995, 376 (6535) :92-94
[4]   Cleavage of Influenza Virus Hemagglutinin by Airway Proteases TMPRSS2 and HAT Differs in Subcellular Localization and Susceptibility to Protease Inhibitors [J].
Boettcher-Friebertshaeuser, Eva ;
Freuer, Catharina ;
Sielaff, Frank ;
Schmidt, Sarah ;
Eickmann, Markus ;
Uhlendorff, Jennifer ;
Steinmetzer, Torsten ;
Klenk, Hans-Dieter ;
Garten, Wolfgang .
JOURNAL OF VIROLOGY, 2010, 84 (11) :5605-5614
[5]   PROTEOLYTIC CLEAVAGE OF INFLUENZA-VIRUS HEMAGGLUTININS - PRIMARY STRUCTURE OF THE CONNECTING PEPTIDE BETWEEN HA1 AND HA2 DETERMINES PROTEOLYTIC CLEAVABILITY AND PATHOGENICITY OF AVIAN INFLUENZA-VIRUSES [J].
BOSCH, FX ;
GARTEN, W ;
KLENK, HD ;
ROTT, R .
VIROLOGY, 1981, 113 (02) :725-735
[6]   Proteolytic activation of influenza viruses by serine proteases TMPRSS2 and HAT from human airway epithelium [J].
Böttcher, Eva ;
Matrosovich, Tatyana ;
Beyerle, Michaela ;
Klenk, Hans-Dieter ;
Garten, Wolfgang ;
Matrosovich, Mikhail .
JOURNAL OF VIROLOGY, 2006, 80 (19) :9896-9898
[7]   Generation of bovine respiratory syncytial virus (BRSV) from cDNA: BRSV NS2 is not essential for virus replication in tissue culture, and the human RSV leader region acts as a functional BRSV genome promoter [J].
Buchholz, UJ ;
Finke, S ;
Conzelmann, KK .
JOURNAL OF VIROLOGY, 1999, 73 (01) :251-259
[8]   Type II Transmembrane Serine Proteases [J].
Bugge, Thomas H. ;
Antalis, Toni M. ;
Wu, Qingyu .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2009, 284 (35) :23177-23181
[9]   STRUCTURE OF INFLUENZA HEMAGGLUTININ AT THE PH OF MEMBRANE-FUSION [J].
BULLOUGH, PA ;
HUGHSON, FM ;
SKEHEL, JJ ;
WILEY, DC .
NATURE, 1994, 371 (6492) :37-43
[10]   Structure of the hemagglutinin precursor cleavage site, a determinant of influenza pathogenicity and the origin of the labile conformation [J].
Chen, J ;
Lee, KH ;
Steinhauer, DA ;
Stevens, DJ ;
Skehel, JJ ;
Wiley, DC .
CELL, 1998, 95 (03) :409-417