Assembly of Tin Oxide/Graphene Nanosheets into 3D Hierarchical Frameworks for High-Performance Lithium Storage

被引:92
作者
Huang, Yanshan [1 ]
Wu, Dongqing [1 ]
Han, Sheng [1 ]
Li, Shuang [1 ]
Xiao, Li [1 ]
Zhang, Fan [1 ]
Feng, Xinliang [1 ,2 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Chem & Chem Engn, Shanghai 200240, Peoples R China
[2] Max Planck Inst Polymer Res, D-55128 Mainz, Germany
关键词
electrochemistry; graphene; mesoporous materials; nanoparticles; tin; GRAPHENE NANOSHEETS; REDUCED GRAPHENE; COAXIAL NANOCABLES; CYCLE PERFORMANCE; ANODE MATERIAL; SNO2; OXIDE; NANOPARTICLES; CARBON; NANOCOMPOSITES;
D O I
10.1002/cssc.201300109
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
3D hierarchical tin oxide/graphene frameworks (SnO2/GFs) were built up by the insitu synthesis of 2D SnO2/graphene nanosheets followed by hydrothermal assembly. These SnO2/GFs exhibited a 3D hierarchical porous architecture with mesopores (approximate to 3nm), macropores (3-6m), and a large surface area (244m(2)g(-1)), which not only effectively prevented the agglomeration of SnO2 nanoparticles, but also facilitated fast ion and electron transport in 3D pathways. As a consequence, the SnO2/GFs exhibited a high capacity of 830mAhg(-1) for up to 70 charge-discharge cycles at 100mAg(-1). Even at a high current density of 500mAg(-1), a reversible capacity of 621mAhg(-1) could be maintained for SnO2/GFs with excellent cycling stability. Such performance is superior to that of previously reported SnO2/graphene and other SnO2/carbon composites with similar weight contents of SnO2.
引用
收藏
页码:1510 / 1515
页数:6
相关论文
共 53 条
[1]   On the Gelation of Graphene Oxide [J].
Bai, Hua ;
Li, Chun ;
Wang, Xiaolin ;
Shi, Gaoquan .
JOURNAL OF PHYSICAL CHEMISTRY C, 2011, 115 (13) :5545-5551
[2]   Thin-film crystalline SnO2-lithium electrodes [J].
Brousse, T ;
Retoux, R ;
Herterich, U ;
Schleich, DM .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1998, 145 (01) :1-4
[3]   Self-Assembly and Embedding of Nanoparticles by In Situ Reduced Graphene for Preparation of a 3D Graphene/Nanoparticle Aerogel [J].
Chen, Wufeng ;
Li, Sirong ;
Chen, Chunhua ;
Yan, Lifeng .
ADVANCED MATERIALS, 2011, 23 (47) :5679-+
[4]   In Situ Generation of Few-Layer Graphene Coatings on SnO2-SiC Core-Shell Nanoparticles for High-Performance Lithium-Ion Storage [J].
Chen, Zhongxue ;
Zhou, Min ;
Cao, Yuliang ;
Ai, Xinping ;
Yang, Hanxi ;
Liu, Jun .
ADVANCED ENERGY MATERIALS, 2012, 2 (01) :95-102
[5]  
Chen ZP, 2011, NAT MATER, V10, P424, DOI [10.1038/NMAT3001, 10.1038/nmat3001]
[6]  
Choi N.-S., 2012, ANGEW CHEM, V124, P10134
[7]   Challenges Facing Lithium Batteries and Electrical Double-Layer Capacitors [J].
Choi, Nam-Soon ;
Chen, Zonghai ;
Freunberger, Stefan A. ;
Ji, Xiulei ;
Sun, Yang-Kook ;
Amine, Khalil ;
Yushin, Gleb ;
Nazar, Linda F. ;
Cho, Jaephil ;
Bruce, Peter G. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2012, 51 (40) :9994-10024
[8]   CNTs@SnO2@Carbon Coaxial Nanocables with High Mass Fraction of SnO2 for Improved Lithium Storage [J].
Ding, Shujiang ;
Chen, Jun Song ;
Lou, Xiong Wen .
CHEMISTRY-AN ASIAN JOURNAL, 2011, 6 (09) :2278-2281
[9]   High electroactivity of polyaniline in supercapacitors by using a hierarchically porous carbon monolith as a support [J].
Fan, Li-Zhen ;
Hu, Yong-Sheng ;
Maier, Joachim ;
Adelhelm, Philipp ;
Smarsly, Bernd ;
Antonietti, Markus .
ADVANCED FUNCTIONAL MATERIALS, 2007, 17 (16) :3083-3087
[10]   Electrochemical lithiation and de-lithiation of MWNT-Sn/SnNi nanocomposites [J].
Guo, ZP ;
Zhao, ZW ;
Liu, HK ;
Dou, SX .
CARBON, 2005, 43 (07) :1392-1399