Continuous carbon nanotube reinforced composites

被引:262
作者
Ci, L. [2 ]
Suhr, J. [1 ]
Pushparaj, V. [3 ]
Zhang, X. [4 ]
Ajayan, P. M. [2 ]
机构
[1] Univ Nevada, Dept Mech Engn, Reno, NV 89557 USA
[2] Rice Univ, Dept Mech Engn & Mat Sci, Houston, TX 77251 USA
[3] Rensselaer Polytech Inst, Dept Mat Sci & Engn, Troy, NY 12180 USA
[4] Shanghai Jiao Tong Univ, Sch Mat Sci & Engn, Shanghai 200030, Peoples R China
关键词
D O I
10.1021/nl8012715
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Carbon nanotubes are considered short fibers, and polymer composites with nanotube fillers are always analogues of random, short fiber composites. The real structural carbon fiber composites, on the other hand, always contain carbon fiber reinforcements where fibers run continuously through the composite matrix. With the recent optimization in aligned nanotube growth, samples of nanotubes; in macroscopic lengths have become available, and this allows the creation of composites that are similar to the continuous fiber composites with individual nanotubes running continuously through the composite body. This allows the proper utilization of the extreme high modulus and strength predicted for nanotubes in structural composites. Here, we fabricate such continuous nanotube polymer composites with continuous nanotube reinforcements and report that under compressive loadings, the nanotube composites can generate more than an order of magnitude improvement in the longitudinal modulus (up to 3300%) as well as damping capability (up to 2100%). It is also observed that composites with a random distribution of nanotubes of same length and similar filler fraction provide three times less effective reinforcement in composites.
引用
收藏
页码:2762 / 2766
页数:5
相关论文
共 27 条
[1]  
Ajayan PM, 2000, ADV MATER, V12, P750, DOI 10.1002/(SICI)1521-4095(200005)12:10<750::AID-ADMA750>3.0.CO
[2]  
2-6
[3]   Carbon nanotubes - the route toward applications [J].
Baughman, RH ;
Zakhidov, AA ;
de Heer, WA .
SCIENCE, 2002, 297 (5582) :787-792
[4]   Anisotropic thermal diffusivity characterization of aligned carbon nanotube-polymer composites [J].
Borca-Tasciuc, T. ;
Mazumder, M. ;
Son, Y. ;
Pal, S. K. ;
Schadler, L. S. ;
Ajayan, P. M. .
JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2007, 7 (4-5) :1581-1588
[5]   Super-compressible foamlike carbon nanotube films [J].
Cao, AY ;
Dickrell, PL ;
Sawyer, WG ;
Ghasemi-Nejhad, MN ;
Ajayan, PM .
SCIENCE, 2005, 310 (5752) :1307-1310
[6]   Effect of pinholes in magnetic tunnel junctions [J].
Chen, Xi ;
Victora, R. H. .
APPLIED PHYSICS LETTERS, 2007, 91 (21)
[7]   Small but strong: A review of the mechanical properties of carbon nanotube-polymer composites [J].
Coleman, Jonathan N. ;
Khan, Umar ;
Blau, Werner J. ;
Gun'ko, Yurii K. .
CARBON, 2006, 44 (09) :1624-1652
[8]   Transverse elasticity of multi-walled carbon nanotubes [J].
Dai, X. B. ;
Merlitz, H. ;
Wu, C. X. .
EUROPEAN PHYSICAL JOURNAL B, 2006, 54 (01) :109-112
[9]   Direct observation of polymer sheathing in carbon nanotube-polycarbonate composites [J].
Ding, W ;
Eitan, A ;
Fisher, FT ;
Chen, X ;
Dikin, DA ;
Andrews, R ;
Brinson, LC ;
Schadler, LS ;
Ruoff, RS .
NANO LETTERS, 2003, 3 (11) :1593-1597
[10]  
Gibson R.F., 1994, PRINCIPAL COMPOSITE