Optimization of conical intersections with floating occupation semiempirical configuration interaction wave functions

被引:73
作者
Toniolo, A
Ben-Nun, M
Martínez, TJ
机构
[1] Univ Illinois, Dept Chem, Urbana, IL 61801 USA
[2] Univ Illinois, Beckman Inst, Urbana, IL 61801 USA
关键词
D O I
10.1021/jp014289y
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We outline a new implementation of a minimal energy conical intersection (MECI) optimization algorithm within the context of semiempirical methods. Computationally, this semiempirical conical intersection optimization method is much less demanding than ab initio CASSCF and MRCI techniques. We apply the method to several molecules and compare the geometries and energies of the resulting MECIs with ab initio CASSCF methods. The locations of the semiempirical MECIs agree very well with the ab initio predictions, but the energetics generally do not. This suggests that the semiempirical conical intersection optimization method may be useful in finding initial guess geometries for ab initio MECI searches and/or in identifying families of MECIs that may be relevant in photochemical dynamics. Indeed, in the present work, we have located many new MECIs for some of the studied molecules that were then verified and refined with ab initio electronic structure theory. The good agreement of MECIs locations further suggests that in many cases, reparametrization of semiempirical methods to reproduce both energetics and locations of MECIs may be successful.
引用
收藏
页码:4679 / 4689
页数:11
相关论文
共 42 条
[1]  
[Anonymous], 1992, SMR
[2]  
[Anonymous], 1994, A New Dimension to Quantum Chemistry: Analytic Derivative Methods in Ab Initio Molecular Electronic Structure Theory
[3]   POTENTIAL-ENERGY SURFACES NEAR INTERSECTIONS [J].
ATCHITY, GJ ;
XANTHEAS, SS ;
RUEDENBERG, K .
JOURNAL OF CHEMICAL PHYSICS, 1991, 95 (03) :1862-1876
[4]  
BEAPARK MJ, 1996, INT J QUANTUM CHEM, V60, P505
[5]  
BEAPARK MJ, 1996, MOL PHYS, V89, P37
[6]  
BEAPARK MJ, 1999, MOL PHYS, V96, P645
[7]   A DIRECT METHOD FOR THE LOCATION OF THE LOWEST ENERGY POINT ON A POTENTIAL SURFACE CROSSING [J].
BEARPARK, MJ ;
ROBB, MA ;
SCHLEGEL, HB .
CHEMICAL PHYSICS LETTERS, 1994, 223 (03) :269-274
[8]   Ab initio multiple spawning:: Photochemistry from first principles quantum molecular dynamics [J].
Ben-Nun, M ;
Quenneville, J ;
Martínez, TJ .
JOURNAL OF PHYSICAL CHEMISTRY A, 2000, 104 (22) :5161-5175
[9]   Photodynamics of ethylene:: ab initio studies of conical intersections [J].
Ben-Nun, M ;
Martínez, TJ .
CHEMICAL PHYSICS, 2000, 259 (2-3) :237-248
[10]  
BOLOVINOS A, 1984, J MOL SPECTROSC, V103, P240, DOI 10.1016/0022-2852(84)90051-1