Cytoplasmic amino and carboxyl domains form a wide intracellular vestibule in an inwardly rectifying potassium channel

被引:41
作者
Lu, T [1 ]
Zhu, YG [1 ]
Yang, J [1 ]
机构
[1] Columbia Univ, Dept Biol Sci, Fairchild Ctr 915, New York, NY 10027 USA
关键词
D O I
10.1073/pnas.96.17.9926
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We have studied the structural components and architecture of the intracellular vestibule of a strongly rectifying channel (Kir2.1) expressed in Xenopus oocytes, Putative vestibule-lining residues were identified by systematically examining covalent modification by sulfhydryl specific reagents of cysteine residues engineered into two cytoplasmic regions. In a stretch of 33 amino acids in the amino terminus (from C54 to V86) and 22 amino acids in the carboxyl terminus (from R213 to S234), 15 and 11 residues, respectively, were found to be accessible to methanethiosulfonate ethylammonium (MTSEA) or methanethiosulfonate ethyltrimethylammonium (MTSET) and presumably project into the aqueous intracellular vestibule. The pattern of accessibility suggests that both stretches may adopt an extended loop structure, To explore the physical dimension of the intracellular vestibule, we covalently linked a constrained number (one to four) of positively charged moieties of different sizes to the E224 position and found that this vestibule region is sufficiently wide to accommodate four modifying groups with dimensions of 12 Angstrom x 10 Angstrom x 6 Angstrom These results suggest that regions in both the amino and carboxyl domains of Kir2.1 channel form a long and wide intracellular vestibule that protrudes beyond the membrane into the cytoplasm.
引用
收藏
页码:9926 / 9931
页数:6
相关论文
共 32 条
[1]   ACETYLCHOLINE-RECEPTOR CHANNEL STRUCTURE PROBED IN CYSTEINE-SUBSTITUTION MUTANTS [J].
AKABAS, MH ;
STAUFFER, DA ;
XU, M ;
KARLIN, A .
SCIENCE, 1992, 258 (5080) :307-310
[2]   NMDAR channel segments forming the extracellular vestibule inferred from the accessibility of substituted cysteines [J].
Beck, C ;
Wollmuth, LP ;
Seeburg, PH ;
Sakmann, B ;
Kuner, T .
NEURON, 1999, 22 (03) :559-570
[3]   The structure of the potassium channel:: Molecular basis of K+ conduction and selectivity [J].
Doyle, DA ;
Cabral, JM ;
Pfuetzner, RA ;
Kuo, AL ;
Gulbis, JM ;
Cohen, SL ;
Chait, BT ;
MacKinnon, R .
SCIENCE, 1998, 280 (5360) :69-77
[4]   STRONG VOLTAGE-DEPENDENT INWARD RECTIFICATION OF INWARD RECTIFIER K+ CHANNELS IS CAUSED BY INTRACELLULAR SPERMINE [J].
FAKLER, B ;
BRANDLE, U ;
GLOWATZKI, E ;
WEIDEMANN, S ;
ZENNER, HP ;
RUPPERSBERG, JP .
CELL, 1995, 80 (01) :149-154
[5]   Identification of a titratable lysine residue that determines sensitivity of kidney potassium channels (ROMK) to intracellular pH [J].
Fakler, B ;
Schultz, JH ;
Yang, J ;
Schulte, U ;
Brandle, U ;
Zenner, HP ;
Jan, LY ;
Ruppersberg, JP .
EMBO JOURNAL, 1996, 15 (16) :4093-4099
[6]   SPERMINE AND SPERMIDINE AS GATING MOLECULES FOR INWARD RECTIFIER K+ CHANNELS [J].
FICKER, E ;
TAGLIALATELA, M ;
WIBLE, BA ;
HENLEY, CM ;
BROWN, AM .
SCIENCE, 1994, 266 (5187) :1068-1072
[7]   POTASSIUM CURRENT AND EFFECT OF CESIUM ON THIS CURRENT DURING ANOMALOUS RECTIFICATION OF EGG CELL-MEMBRANE OF A STARFISH [J].
HAGIWARA, S ;
MIYAZAKI, S ;
ROSENTHAL, NP .
JOURNAL OF GENERAL PHYSIOLOGY, 1976, 67 (06) :621-638
[8]  
HILLE B, 1992, IONIC CHANNELS EXCIT, P127
[9]   CLONING AND EXPRESSION OF AN INWARDLY RECTIFYING ATP-REGULATED POTASSIUM CHANNEL [J].
HO, K ;
NICHOLS, CG ;
LEDERER, WJ ;
LYTTON, J ;
VASSILEV, PM ;
KANAZIRSKA, MV ;
HEBERT, SC .
NATURE, 1993, 362 (6415) :31-38
[10]   PUTATIVE RECEPTOR FOR THE CYTOPLASMIC INACTIVATION GATE IN THE SHAKER K+ CHANNEL [J].
ISACOFF, EY ;
JAN, YN ;
JAN, LY .
NATURE, 1991, 353 (6339) :86-90