Robustness of exponential stability of stochastic differential delay equations

被引:160
作者
Mao, X
机构
[1] Department of Statistics and Modeling Science, University of Strathclyde
关键词
D O I
10.1109/9.486647
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Regard the stochastic differential delay equation dx(t) = [(A + <(A)over bar(t)>)x(t)+(B + <(B)over bar(t - tau)>)x(t - tau)] dt + g(t,x(t),x(t - tau)) dw(t) as the result of the effects of uncertainty, stochastic perturbation, and time lag to a linear ordinary differential equation x(t) = (A + B)x(t). Assume the linear system is exponentially stable. In this paper we shall characterize how much the uncertainty, stochastic perturbation, and time lag the linear system can bear such that the stochastic delay system remains exponentially stable. The result will also be extended to nonlinear systems.
引用
收藏
页码:442 / 447
页数:6
相关论文
共 12 条
[1]  
HALE JK, 1977, THEORY FUNCTIONAL DI
[2]  
Kolmanovskii V., 1981, Stability and Periodic Modes of Control Systems with Aftereffect
[3]  
Kolmanovskii V. B., 1986, MATH SCI ENG, V180
[4]  
KOLMANOVSKII VB, 1969, PROBL INFORM TRANSM, V5, P59
[6]  
Mao X., 1994, EXPONENTIAL STABILIT
[7]  
Mohammed S. E. A., 1986, STOCHASTIC FUNCTIONA
[8]   STABILITY OF X(T) = AX(T) + BX(T-TAU) [J].
MORI, T ;
KOKAME, H .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1989, 34 (04) :460-462
[9]  
Mori T., 1985, IEEE T AUTOMAT CONTR, V30, P185
[10]   STABILITY ANALYSIS OF LINEAR-SYSTEMS WITH TIME-DELAY [J].
SU, JH ;
FONG, IK ;
TSENG, CL .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1994, 39 (06) :1341-1344