The Arabidopsis petal:: a model for plant organogenesis

被引:84
作者
Irish, Vivian F. [1 ,2 ]
机构
[1] Yale Univ, Dept Mol Cellular & Dev Biol, New Haven, CT 06520 USA
[2] Yale Univ, Dept Ecol & Evolutionary Biol, New Haven, CT 06520 USA
基金
美国国家科学基金会;
关键词
D O I
10.1016/j.tplants.2008.05.006
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Organogenesis entails the regulation of cell division, cell expansion, cell and tissue type differentiation, and patterning of the organ as a whole. Petals are ideally suited to dissecting these processes. Petals are dispensable for growth and reproduction, enabling varied manipulations to be carried out with ease. In Arabidopsis, petals have a simple laminar structure with a small number of cell types, facilitating the analysis of organogenesis. This review summarizes recent studies that have illuminated some of the complex interplay between the genetic pathways controlling petal specification, growth and differentiation in Arabidopsis. These advances, coupled with the advantages of using petals as a model experimental system, provide an excellent platform to investigate the underlying mechanisms driving plant organogenesis.
引用
收藏
页码:430 / 436
页数:7
相关论文
共 84 条
[1]  
Aida M, 1999, DEVELOPMENT, V126, P1563
[2]   Control of plant organ size by KLUH/CYP78A5-dependent intercellular signaling [J].
Anastasiou, Elena ;
Kenz, Sabine ;
Gerstung, Moritz ;
MacLean, Daniel ;
Timmer, Jens ;
Fleck, Christian ;
Lenhard, Michael .
DEVELOPMENTAL CELL, 2007, 13 (06) :843-856
[3]   Growing up to one's standard [J].
Anastasiou, Elena ;
Lenhard, Michael .
CURRENT OPINION IN PLANT BIOLOGY, 2007, 10 (01) :63-69
[4]   Regulation of flowering time and floral organ identity by a microRNA and its APETALA2-like target genes [J].
Aukerman, MJ ;
Sakai, H .
PLANT CELL, 2003, 15 (11) :2730-2741
[5]   The early extra petals1 mutant uncovers a role for MicroRNA miR164c in regulating petal number in Arabidopsis [J].
Baker, CC ;
Sieber, P ;
Wellmer, F ;
Meyerowitz, EM .
CURRENT BIOLOGY, 2005, 15 (04) :303-315
[6]   Control of cell and petal morphogenesis by R2R3 MYB transcription factors [J].
Baumann, Kim ;
Perez-Rodriguez, Maria ;
Bradley, Desmond ;
Venail, Julien ;
Bailey, Paul ;
Jin, Hailing ;
Koes, Ronald ;
Roberts, Keith ;
Martin, Cathie .
DEVELOPMENT, 2007, 134 (09) :1691-1701
[7]   Developmental expression patterns of Arabidopsis XTH genes reported by transgenes and Genevestigator [J].
Becnel, Jaime ;
Natarajan, Mukil ;
Kipp, Alex ;
Braam, Janet .
PLANT MOLECULAR BIOLOGY, 2006, 61 (03) :451-467
[8]   Arabidopsis genes AS1, AS2, and JAG negatively regulate boundary-specifying genes to promote sepal and petal development [J].
Ben Xu ;
Li, Ziyu ;
Zhu, Yan ;
Wang, Hua ;
Ma, Hong ;
Dong, Aiwu ;
Huang, Hai .
PLANT PHYSIOLOGY, 2008, 146 (02) :566-575
[9]   Genetic analysis of Arabidopsis GATA transcription factor gene family reveals a nitrate-inducible member important for chlorophyll synthesis and glucose sensitivity [J].
Bi, YM ;
Zhang, Y ;
Signorelli, T ;
Zhao, R ;
Zhu, T ;
Rothstein, S .
PLANT JOURNAL, 2005, 44 (04) :680-692
[10]   Redundant enhancers mediate transcriptional repression of AGAMOUS by APETALA2 [J].
Bomblies, K ;
Dagenais, N ;
Weigel, D .
DEVELOPMENTAL BIOLOGY, 1999, 216 (01) :260-264