Prediction of "hot spots" of aggregation in disease-linked polypeptides -: art. no. 18

被引:180
作者
de Groot, NS [1 ]
Pallarés, I
Avilés, FX
Vendrell, J
Ventura, S
机构
[1] Univ Autonoma Barcelona, Fac Ciencies, Dept Bioquim & Biol Mol, E-08193 Barcelona, Spain
[2] Univ Autonoma Barcelona, Inst Biotecnol & Biomed, E-08193 Barcelona, Spain
关键词
D O I
10.1186/1472-6807-5-18
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
Background: The polypeptides involved in amyloidogenesis may be globular proteins with a defined 3D- structure or natively unfolded proteins. The first class includes polypeptides such as beta 2-microglobulin, lysozyme, transthyretin or the prion protein, whereas beta-amyloid peptide, amylin or alpha-synuclein all belong to the second class. Recent studies suggest that specific regions in the proteins act as "hot spots" driving aggregation. This should be especially relevant for natively unfolded proteins or unfolded states of globular proteins as they lack significant secondary and tertiary structure and specific intra-chain interactions that can mask these aggregation- prone regions. Prediction of such sequence stretches is important since they are potential therapeutic targets. Results: In this study we exploited the experimental data obtained in an in vivo system using beta-amyloid peptide as a model to derive the individual aggregation propensities of natural amino acids. These data are used to generate aggregation profiles for different disease- related polypeptides. The approach detects the presence of "hot spots" which have been already validated experimentally in the literature and provides insights into the effect of disease- linked mutations in these polypeptides. Conclusion: The proposed method might become a useful tool for the future development of sequence-targeted anti-aggregation pharmaceuticals.
引用
收藏
页数:15
相关论文
共 75 条
[1]   Analysis of the structural and functional elements of the minimal active fragment of islet amyloid polypeptide (IAPP) - An experimental support for the key role of the phenylalanine residue in amyloid formation [J].
Azriel, R ;
Gazit, E .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (36) :34156-34161
[2]   Amyloid fibril formation by Aβ16-22, a seven-residue fragment of the Alzheimer's β-amyloid peptide, and structural characterization by solid state NMR [J].
Balbach, JJ ;
Ishii, Y ;
Antzutkin, ON ;
Leapman, RD ;
Rizzo, NW ;
Dyda, F ;
Reed, J ;
Tycko, R .
BIOCHEMISTRY, 2000, 39 (45) :13748-13759
[3]   β2-microglobulin can be refolded into a native state from ex vivo amyloid fibrils [J].
Bellotti, V ;
Stoppini, M ;
Mangione, P ;
Sunde, M ;
Robinson, C ;
Asti, L ;
Brancaccio, D ;
Ferri, G .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 1998, 258 (01) :61-67
[4]   Elucidation of primary structure elements controlling early amyloid β-protein oligomerization [J].
Bitan, G ;
Vollers, SS ;
Teplow, DB .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (37) :34882-34889
[5]   Identification of the region of non-Aβ component (NAC) of Alzheimer's disease amyloid responsible for its aggregation and toxicity [J].
Bodles, AM ;
Guthrie, DJS ;
Greer, B ;
Irvine, GB .
JOURNAL OF NEUROCHEMISTRY, 2001, 78 (02) :384-395
[6]   Instability, unfolding and aggregation of human lysozyme variants underlying amyloid fibrillogenesis [J].
Booth, DR ;
Sunde, M ;
Bellotti, V ;
Robinson, CV ;
Hutchinson, WL ;
Fraser, PE ;
Hawkins, PN ;
Dobson, CM ;
Radford, SE ;
Blake, CCF ;
Pepys, MB .
NATURE, 1997, 385 (6619) :787-793
[7]   Local cooperativity in the unfolding of an amyloidogenic variant of human lysozyme [J].
Canet, D ;
Last, AM ;
Tito, P ;
Sunde, M ;
Spencer, A ;
Archer, DB ;
Redfield, C ;
Robinson, CV ;
Dobson, CM .
NATURE STRUCTURAL BIOLOGY, 2002, 9 (04) :308-315
[8]  
Chabry J, 2003, J NEUROSCI, V23, P462
[9]   Rationalization of the effects of mutations on peptide and protein aggregation rates [J].
Chiti, F ;
Stefani, M ;
Taddei, N ;
Ramponi, G ;
Dobson, CM .
NATURE, 2003, 424 (6950) :805-808
[10]   Mutation E46K increases phospholipid binding and assembly into filaments of human α-synuclein [J].
Choi, W ;
Zibaee, S ;
Jakes, R ;
Serpell, LC ;
Davletov, B ;
Crowther, RA ;
Goedert, M .
FEBS LETTERS, 2004, 576 (03) :363-368