Electrospun silk-BMP-2 scaffolds for bone tissue engineering

被引:941
作者
Li, CM
Vepari, C
Jin, HJ
Kim, HJ
Kaplan, DL [1 ]
机构
[1] Tufts Univ, Dept Biomed Engn, Bioengn & Biotechnol Ctr, Medford, MA 02155 USA
[2] Tufts Univ, Dept Chem & Biol Engn, Medford, MA 02155 USA
[3] Inha Univ, Dept Polymer Sci & Engn, Inchon 402751, South Korea
关键词
silk; electrospinning; bone; tissue engineering; BMP; hydroxyapatite;
D O I
10.1016/j.biomaterials.2006.01.022
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Silk fibroin fiber scaffolds containing bone morphogenetic protein 2 (BMP-2) and/or nanoparticles of hydroxyapatite (nHAP) prepared via electrospinning were used for in vitro bone formation from human bone marrow-derived mesenchymal stem cells (hMSCs). BMP-2 survived the aqueous-based electrospinnig process in bioactive form. hMSCs were cultured for up to 31 days under static conditions in osteogenic media on the scaffolds (silk/PEO/BMP-2, silk/PEO/nHAP, silk/PEO/nHAP/BMP-2) and controls (silk/PEO, silk/PEO extracted). Electrospun silk fibroin-based scaffolds supported hMSC growth and differentiation toward osteogenic outcomes. The scaffolds with the co-processed BMP-2 supported higher calcium deposition and enhanced transcript levels of bone-specific markers than in the controls, indicating that these nanofibrous electrospun silk scaffolds were an efficient delivery system for BMP-2. X-ray diffraction (XRD) analysis revealed that the apatite formed on the silk fibroin/BMP-2 scaffolds had higher crystallinity than on the silk fibroin scaffold controls. In addition, nHAP particles were incorporated into the electrospun fibrous scaffolds during processing and improved bone formation. The coexistence of BMP-2 and nHAP in the electrospun silk fibroin fibers resulted in the highest calcium deposition and upregulation of BMP-2 transcript levels when compared with the other systems. The results suggest that electrospun silk-fibroin-based scaffolds are potential candidates for bone tissue engineering. Furthermore, the mild aqueous process required to spin the fibers offers an important option for delivery of labile cytokines and other components into the system. (c) 2006 Elsevier Ltd. All rights reserved.
引用
收藏
页码:3115 / 3124
页数:10
相关论文
共 63 条
[1]  
Atlman G. H., 2003, BIOMATERIALS, V24, P401
[2]   MECHANISMS AND STRUCTURE OF THE BOND BETWEEN BONE AND HYDROXYAPATITE CERAMICS [J].
BAGAMBISA, FB ;
JOOS, U ;
SCHILLI, W .
JOURNAL OF BIOMEDICAL MATERIALS RESEARCH, 1993, 27 (08) :1047-1055
[3]   Novel biodegradable electrospun membrane: scaffold for tissue engineering [J].
Bhattarai, SR ;
Bhattarai, N ;
Yi, HK ;
Hwang, PH ;
Cha, DI ;
Kim, HY .
BIOMATERIALS, 2004, 25 (13) :2595-2602
[4]   Electrospinning collagen and elastin: Preliminary vascular tissue engineering [J].
Boland, ED ;
Matthews, JA ;
Pawlowski, KJ ;
Simpson, DG ;
Wnek, GE ;
Bowlin, GL .
FRONTIERS IN BIOSCIENCE-LANDMARK, 2004, 9 :1422-1432
[5]   Tailoring tissue engineering scaffolds using electrostatic processing techniques: A study of poly(glycolic acid) electrospinning [J].
Boland, ED ;
Wnek, GE ;
Simpson, DG ;
Pawlowski, KJ ;
Bowlin, GL .
JOURNAL OF MACROMOLECULAR SCIENCE-PURE AND APPLIED CHEMISTRY, 2001, 38 (12) :1231-1243
[6]   Surface characterization of porous, biocompatible protein polymer thin films [J].
Buchko, CJ ;
Kozloff, KM ;
Martin, DC .
BIOMATERIALS, 2001, 22 (11) :1289-1300
[7]   Processing and microstructural characterization of porous biocompatible protein polymer thin films [J].
Buchko, CJ ;
Chen, LC ;
Shen, Y ;
Martin, DC .
POLYMER, 1999, 40 (26) :7397-7407
[8]   FT-IR study for hydroxyapatite/collagen nanocomposite cross-linked by glutaraldehyde [J].
Chang, MC ;
Tanaka, J .
BIOMATERIALS, 2002, 23 (24) :4811-4818
[9]   FORMATION OF CARBONATE-APATITE CRYSTALS AFTER IMPLANTATION OF CALCIUM-PHOSPHATE CERAMICS [J].
DACULSI, G ;
LEGEROS, RZ ;
HEUGHEBAERT, M ;
BARBIEUX, I .
CALCIFIED TISSUE INTERNATIONAL, 1990, 46 (01) :20-27
[10]   A novel method for preparing ultra-fine alumina-borate oxide fibres via an electrospinning technique [J].
Dai, HQ ;
Gong, J ;
Kim, H ;
Lee, D .
NANOTECHNOLOGY, 2002, 13 (05) :674-677