Directing orbits of chaotic systems in the presence of noise: Feedback correction

被引:16
作者
Paskota, M
Mees, AI
Teo, KL
机构
[1] UNIV WESTERN AUSTRALIA,DEPT MATH,CTR APPL DYNAM & OPTIMIZAT,NEDLANDS,WA 6907,AUSTRALIA
[2] CURTIN UNIV TECHNOL,SCH MATH & STAT,PERTH,WA 6001,AUSTRALIA
关键词
D O I
10.1023/A:1008208914747
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we consider the directing of orbits of chaotic dynamical systems towards desired targets in the presence of random dynamical noise. Our aim is to significantly reduce the time needed to reach a target region by applying only small, bounded perturbations. We outline a technique for deriving open-loop controllers based on optimal control theory, and then propose methods for improving the performance of these controllers to counter the effects of noise. The improvements are illustrated by examples.
引用
收藏
页码:25 / 47
页数:23
相关论文
共 26 条
[1]   NONLINEAR PREDICTION OF CHAOTIC TIME-SERIES [J].
CASDAGLI, M .
PHYSICA D, 1989, 35 (03) :335-356
[2]  
Chen G., 1992, International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, V2, P407, DOI 10.1142/S0218127492000392
[3]  
CHEN G, 1994, CONTROL SYNCHRONIZAT
[4]   OPTIMAL-CONTROL OF CHAOTIC SYSTEMS [J].
CHEN, GR .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1994, 4 (02) :461-463
[5]   FROM CHAOS TO ORDER - PERSPECTIVES AND METHODOLOGIES IN CONTROLLING CHAOTIC NONLINEAR DYNAMICAL SYSTEMS [J].
Chen, Guanrong ;
Dong, Xiaoning .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1993, 3 (06) :1363-1409
[6]  
Gill M., 1981, Practical Optimization
[7]  
Guckenheimer J., 2013, NONLINEAR OSCILLATIO, V42, DOI DOI 10.1007/978-1-4612-1140-2
[8]  
JACKSON EA, 1990, PHYS LETT A, V151, P478, DOI 10.1016/0375-9601(90)90465-Z
[9]  
JACKSON EA, 1991, PHYSICA D, V50, P341, DOI 10.1016/0167-2789(91)90004-S
[10]  
Jennings L., 1990, MISER3 OPTIMAL CONTR